

Data Gap Assessment – Upgrades to Melrose Park Public School

110 Wharf Road, Melrose Park NSW

Prepared for: JohnStaff Pty Ltd on behalf of Department of Education

A101023.0436.01 | A101023.0436.01.DGA.Melrose_v2f | Date: 1/04/2025

Document Information

Report Title:	Data Gap Assessment – Upgrades to Melrose Park
Prepared for:	JohnStaff Pty Ltd on behalf of NSW Department of Education
Project Address:	110 Wharf Road, Melrose Park NSW
File Reference:	A101023.0436.01
Report Reference:	A101023.0436.01.DGA.Melrose_v2f

Document Control

Version	Date	Author	Revision description	Reviewer
V1d	24/01/2025	Nicholas Maricic	Draft for client review	Andrew Hunt
V1f	06/03/2025	Karin Azzam	Final for issue	Sam Goldsmith
V2f	01/04/2025	Karin Azzam	Minor Updates	Sam Goldsmith

Distribution

Version	Date	Format	No. of Copies	Distributed To
V2f	01/04/2025	PDF	1	Johnstaff Pty Ltd

For and on behalf of

ADE Consulting Group Pty Ltd ABN: 14 617 358 808 Unit 6/7 Millenium Ct Silverwater NSW 2128

Prepared and issued by:

Reviewed by:

Karin Azzam Environmental Consultant Sam Goldsmith Senior Environmental Consultant

T. 1300 796 922 | E. info@ade.group

This report is copyright. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without permission in writing from ADE Consulting Group Pty Ltd.

CONTENTS

D	ocume	nt Information	i
D	ocume	nt Control	i
D	istribut	tion	i
E	kecutiv	e Summary	Vİ
1	Intro	oduction	1
	1.1	Activity Description	1
	1.2	Activity Site	2
	1.3	Objectives	2
	1.4 1 5	Scope of Work	2 د
2	I.J Rovi	iew of environmental factors	2
2			
_	2.1	REF Review Checklist	6
3	Site	Identification and Surrounding Environment	7
	3.1	Location and details	7
	3.2	Surrounding features	7
4	Envi	ironmental setting	8
5	Site	History and Previous Environmental Investigations	9
	5.1	Site history	9
	5.2	Previous Environmental Investigations	9
	5.2.1	(ADE, 2023). Phase I - Preliminary Site Investigation	9
	5.2.2	ADE (2024). Phase II - Detailed Site Investigation	10
	5.3	Assessment of historical information integrity	11
6	Preli	liminary Conceptual Site Model	12
	6.1	Potential Contamination Sources	12
	6.2	Chemicals of potential concern	12
	6.3	Potential Exposure Pathways	12
	6.3.1	Human	12
	6.3.2	2 Ecological	13
	6.4	Sensitive receptors	13
	6.5	Source-Pathway-Receptor linkages	13
7	Site	Assessment Criteria	15
	7.1	Health-based investigation levels	15
	7.2	Health screening levels	16
	7.3	Management Limits	17
	7.4	Ecological Investigation Levels	17
	7.5	Ecological Screening Levels	18
	/.b 7 7	Aestnetics	. 19
	7.7 7.8	Waste Classification	19 10
0	ما		
ð	inve		
	8.1 8.2	Sampling design and Kationale	21
	0.2		21
	8.2.1	Preliminary items	21

	8.2.2 8.2.3	 Intrusive investigation and soil assessment	L 2
9	Resu	ults and Discussion23	3
9	1	Field observations	3
	9.1.1 9.1.2 9.1.3	Investigation area features 2 Soil profile 2 PID Field Screening 2	3 3 3
9	2	Soil Assessment	1
	9.2.1 9.2.2 9.2.3	Human Health	1 1 1
9 9	3 4	Preliminary Waste Classification Assessment	1 1
10 11 12	Qua Revi Con	lity Assurance and Quality Control	5 5 7
1 1 1 1 1	2.1 2.2 2.3 2.4 2.5 2.6	Field observations27Soil Assessment27Preliminary Waste Classification Assessment27Limitations, uncertainties and assumptions27Recommendations and Legal Considerations28Land-Use Suitability Statement28	7 7 7 3 8
13 14	Miti Bibli	igation Measures))

Tables

Table 1: Summary of Relevant Section of the Part 5 Guidelines and EP&A Regulation	4
Table 2: REF review checklist of relevant items	6
Table 3: Site identification	7
Table 4: Surrounding land uses	7
Table 5: Environmental setting,	8
Table 6: Preliminary Site Model Summary1	4
Table 7. Health investigations levels for soil contaminants. 1	5
Table 8. Toxic equivalency factor (TEF) of individual PAH species1	6
Table 9. Health screening levels for soil contaminants1	6
Table 10. Health screening levels for asbestos contamination in soil	6
Table 11. Management limits for TRH fraction in soil. 1	7
Table 12. CEC, pH and clay content values that used to calculate investigation area-specific EILs1	7
Table 13. Investigation area-specific EIL criteria. 1	8
Table 14. Ecological screening levels for soil contaminants. 1	8

Table 15: Summary of analytical schedule	22
Table 16. Soil Profile	23
Table 17: Updated source pathway receptor analysis,	26
Table 18: Summary of Potential Risks and Mitigation Measures	29

Figures

Figure 1: Site locality Figure 2: Site location and sampling design plan

Appendices

- **Appendix A Figures**
- Appendix B Proposed Development Footprint and Plan
- Appendix C Data Quality Objectives
- Appendix E Test-pit Logs
- Appendix F Equipment Calibration Certificates
- Appendix G Results Summary Table
- Appendix H Analytical Reports and Chain of Custody
- Appendix I Data Quality Assessment
- Appendix J RPD Calculations

Abbreviations

Abbreviation	Definition	
ACM	Asbestos Containing Material	
ADE	ADE Consulting Group Pty Ltd	
AHD	Australian Height Datum	
AS	Australian Standard	
BGL	Below Ground Level	
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes	
COC	Chain of Custody	
CoPCs	Contaminants of Potential Concern	
CSM	Conceptual Site Model	
DP	Deposited Plan	
BYDA	Before You Dig Australia	
DQO	Data Quality Objectives	
DSI	Detailed Site Investigation	
EILs	Ecological Investigation Levels	
EPA	Environment Protection Authority	
EMP	Environmental Management Plan	
ESLs	Ecological Screening Levels	
HILs	Health Investigation Levels	
HSLs	Health Screening Levels	
LEP	Local Environmental Plan	
LGA	Local Government Area	
m BGL	meters Below Ground Level	
NATA	National Association of Testing Authorities	
NEPC	National Environmental Protection Council	
NEPM	National Environmental Protection Measure	
NSW	New South Wales	
NSW EPA	New South Wales Environment Protection Authority	
OPPs	Organophosphorus Pesticides	
OCPs	Organochlorine Pesticides	
PAHs	Polycyclic Aromatic Hydrocarbons	
PFAS	Per-fluoroalkyl substances	
PQL	Practical Quantification Limit	
PSI	Preliminary Site Investigation	
QA/QC	Quality Assurance/Quality Control	
RPD	Relative Percent Difference	
SAC	Site Assessment Criteria	

Executive Summary

Background and Objective

ADE Consulting Group Pty Ltd (ADE) was engaged by JohnStaff Pty Ltd (JohnStaff) on behalf of the NSW Department of Education (DoE) to undertake a data gap assessment (DGA) at Melrose Park Public School (MPPS) at 110 Wharf Road, Melrose Park NSW 2114 (the "site") to investigate the nature and extent of contamination (if any) within a sporting or playing field situated in the south-western portion (the "investigation area").

This DGA is a supplementary investigation to the Detailed Site Investigation (DSI) following revision to the proposed development area and has been prepared to complement a pre-existing review of environmental factors (REF) for the upgrade of the MPPS (the 'activity'). The purpose of the REF was to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure) 2021 (T&I SEPP) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act). The activity is to be undertaken pursuant to Chapter 3, Part 3.4, Section 3.37 of the T&I SEPP and in consideration of the stakeholder and community participation plan.

The primary objective of this DGA is to evaluate whether unacceptable contamination may exist within the revised development area and determine whether further investigation, remediation or management is required prior to the proposed activity. A secondary objective is to provide preliminary advice regarding the off-site management of material which may be surplus to project design requirements during the activity.

Scope of Works

The scope of work consisted of:

- Preliminary works including a review and summary of the findings from the Phase I detailed site investigation (DSI) undertaken by ADE in 2023 (ADE, 2023) and development of a soil sampling plan.
- Site inspection and an intrusive investigation involving the advancement of 17 test pits across the investigation area using an excavator to enable assessment of the sub-surface lithology and collection of representative soil samples for laboratory analysis.
- Data evaluation and provision of this DGA report with findings and recommendations from the assessment.

Summary of key findings

The key findings of the investigation are listed below:

- No buildings have existed on the investigation area since its original use as a rural property and throughout the history of Melrose Park Public School since 1945 where it has been used as an open playing and sports field.
- The school is surrounded by low to medium density residential properties to the east and commercial industrial properties to the North, South and West.
- The investigation area is underlain by shallow topsoil and fill comprised of a Silty Sandy Clay which is overlying natural residuals Clay.
- Observations of the sub-surface soils at the locations assessed did not note any visual / olfactory indications of contamination or asbestos.
- Analytical soils results were reported below adopted site assessment criteria (SAC).

• In-situ soil materials appear to be chemically consistent with the criteria assigned for 'General Solid Waste (non-putrescible)' as per the NSW EPA (2014) Waste Classification Guidelines.

Conclusions and Recommendations

Based on the analytical results collected from soil samples analysed across the investigation area, the in-situ soils represent a 'low risk' of contamination and are considered suitable for the proposed development and ongoing land-use as a primary school.

The following recommendations to mitigate potential environmental and pollution risks during the activity are made:

- Mitigation measures include the preparation of suitably management plans for construction and potential unexpected finds prior to site preparation and bulk earth works commencing and may include but not necessarily be limited to:
 - Construction environment management plan.
 - \circ $\;$ Soil and water management plan.
 - \circ $\;$ Noise and vibration management plan.
 - Waste generated by the activity must be disposed in accordance with the POEO Act.

A final classification in accordance with NSW EPA (2014) Waste Classification Guidelines should be completed considering the minimum sampling densities for the volume of material, ensuring waste is disposed to suitably licenced facilities.

1 Introduction

ADE Consulting Group Pty Ltd (ADE) was engaged by JohnStaff Pty Ltd (JohnStaff) on behalf of the NSW Department of Education (DoE) to undertake a data gap assessment (DGA) at Melrose Park Public School (MPPS) at 110 Wharf Road, Melrose Park NSW 2114 (the "site").

ADE understands that the site will be redeveloped to provide new classrooms and core facilities at MPPS to meet anticipated enrolment growth in the area.

ADE has previously completed a preliminary site investigation (PSI) in 2023 (ADE, 2023) and detailed site investigation (DSI) in 2024 (ADE, 2024) for the central and eastern portion of the site. This DGA is a supplementary investigation to the DSI (ADE, 2024) following revision to the design plans for the upgrades to MPPS (the "activity") and is a targeted investigation of an area in the western portion of the site (the "investigation area") currently in use as a playing field. This DGA is required to investigate the nature and extent of contamination (if any) within the investigation area prior to the activity.

This DGA has been prepared to accompany a Review of Environmental Factors (REF) for the activity proposed by the Department of Education under Part 5 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and *State Environmental Planning Policy (Transport and Infrastructure) 2021* (SEPP TI). To support the REF, environmental factors in the *Guidelines for Division 5.1 assessments* by the Department of Planning, Housing and Infrastructure that are relevant to this report have been considered and summarised in **Section 2** of this report.

The site locality and investigation area have been presented in Figure 1 and Figure 2 in Appendix A.

1.1 Activity Description

The activity is for upgrades to Melrose Park Public School within a one to three-storey built form, including

- Demolition of existing school buildings;
- Site preparation works including tree removal;
- Construction of the following buildings:
 - **Block A**: One (1) storey building comprising;
 - universal pre-school (UPS)
 - outdoor play area for the UPS; and
 - detached storeroom;
 - **Block B1**: Two (2) storey building comprising:
 - staff and administration areas;
 - library;
 - 4 special programs rooms;
 - Pedestrian bridge to Block B2;
 - **Block B2:** Three (3) storey building comprising:
 - 23 classrooms;
 - amenities/services cores; and
 - pedestrian bridge to Block B3;
 - **Block B3:** Three (3) storey building comprising:
 - 12 classrooms; and
 - amenities/services cores;

- Block C: One (1) storey building comprising:
 - hall;
 - amenities;
 - canteen;
 - OSHC; and
 - COLA;
- Construction of two (2) car parking areas; and
- Landscaping works.

Refer to **Appendix B** for site plans showing the footprint of the activity.

1.2 Activity Site

Melrose Park Public School is located at 110 Wharf Road, Melrose Park and is legally known as Lot 3 in DP 535298 with an approximate site area of 2.5 hectares. The site has a frontage to Wharf Road (east), Mary Street (south), and Waratah Street (west). The site is adjoined by 2-3 storey light industrial development to the north, 1-2 storey industrial and commercial developments to the south, residential dwellings to the east and industrial and commercial development to the west. The site locality is presented in **Figure 1** (Appendix A).

1.3 Objectives

The objectives of the DGA were to:

- Support the REF for the proposed activity by determining whether unacceptable contamination may exist within the activity area and determine whether further investigation, remediation or management is required prior to commencing the activity.
- Provide preliminary advice regarding the offsite management of material as waste which may be surplus to requirements.

1.4 Scope of Work

The scope of work required to achieve the objectives of the investigation involved the following:

- Completing a desktop review to identify historical land uses and the former/current environment condition of the investigation area.
- Undertaking a walkover to identify potential sources of contamination, including within surrounding land-uses.
- Perform a suitable intrusive sampling regime to assess and characterise soil material within the investigation area per email proposal sent on 10 January 2025.
- Deliver a DGA report which outlines the investigation methodology and interpretation of results, including conclusions and recommendations with reference to the inferred land-use suitability setting.

1.5 Legislation and Guidelines

This report has been prepared in accordance with the following guidelines and legislation:

- Contaminated Land Management Act 1997 (CLM Act)
- Environmental Planning and Assessment Act 1979 (EP&A Act)

- National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as Amended 2013) (ASC NEPM, 2013)
- Protection of the Environment Operations Act 1997 (POEO Act).
- Work Health and Safety Act 2011 (WHS Act).
- Work Health and Safety Regulation 2017,

The investigation was carried out in compliance with the following principal acts and regulations, and national and international guidance:

- Protection of the Environment Operations (Waste) Regulation 2014
- NSW Environment Protection Authority (EPA). 2014. Waste Classification Guidelines Part 1: Classifying Waste (NSW EPA, 2014).
- NSW EPA. 2017. Contaminated Land Management: *Guidelines for the NSW Site Auditor Scheme, 3rd edition* (NSW EPA, 2017).
- NSW EPA. 2020. Guidelines for Consultants Reporting on Contaminated Land, (NSW EPA, 2020)
- NSW EPA. 2022. Sampling Design guidelines for contaminated land (NSW EPA, 2022)
- Western Australian Department of Health (DoH). 2009. Guidelines for the assessment, remediation and management of asbestos contaminated sites (WA DoH, 2009).
 - ADE note the WA DoH guidelines were updated in 2021, however the updated version has not been endorsed by the NSW EPA.
- State Environmental Planning Policy (Resilience and Hazards) 2021

2 Review of environmental factors

This report examines and takes into account relevant environmental factors in the *Guidelines for Division 5.1* assessments (the Guidelines) by the Department of Planning, Housing and Infrastructure and *Environmental Planning and Assessment Regulations 2021* under Section 170, Section 171 and Section 171A of the EP&A Regulation as outlined in **Table 1** below.

Table 1: Summary of Relevant Section of the Part 5 Guidelines and EP&A Regulation

Regulation / Guideline Section	Requirement	Response	Report Section
(j) risk to safety of the environment	 (j1) whether the development will have adverse environmental impacts (flood or stormwater runoff, storm surge, bushfire, ongoing maintenance of landscaping within the Asset Protection Zone, contamination leak, wind speeds, extreme heat, urban heat, climate change adaptation) on the surrounding area, particularly in sensitive environmental, cultural areas or residential neighbourhoods. (j2) impacts on soil resources and related infrastructure and riparian lands on and near the site, soil erosion, salinity and acid sulfate soils, surface water resources (quality and quantity), hydrology, dependent ecosystems, drainage lines, downstream assets and watercourses, groundwater resources. 	 From ASC NEPM (2013): "The purpose of site assessment is to determine the human health and ecological risks associated with the presence of site contamination and to inform any remediation or management plan to make the site fit for the current or proposed land use". Based on the data obtained during the DSI (ADE, 2024) and this DGA, ADE considers that there is a low and acceptable risk from contamination at the site and that the site is suitable for its ongoing as a primary school. This is based upon the generic land-use scenario provided in ASC NEPM (2013) and Tier 1 threshold criteria. The activity's impact on soil resources is not anticipated to increase and mitigation measures have been 	Section 12.6 Site suitability statement. Section 4 Environmental setting,
(I) pollution of the environment	 (I) any pollution during construction and post construction e.g., air (including odours and greenhouse gases) water (including runoff patterns, flooding/ tidal regimes, water quality health); soil (including contamination, erosions, instability risks); noise and vibration (including consideration of sensitive receptors); light pollution; waste, including hazardous waste. (I2) impact of contamination spill, movement or disturbance during and post construction, and into the long term. 	The site was not considered to be significantly contaminated. To manage potential risks associated with construction activities including pollutions events such as sediment runoff, mitigation measures were proposed.	Section 13 Mitigation Measures

Regulation / Guideline Section	Requirement	Response	Report Section
	(I3) impact of potential rainfall or flood event during construction (e.g. storage of fuel for construction vehicles, stockpiles of soil, etc).		
	(l4) dangerous goods and hazardous material associated with the development (i.e. labs).		

2.1 REF Review Checklist

The following REF Review Checklist items provided by the DoE (and relevant to this report) have been presented in **Table 2** below, along with the associated section of the report.

	Table 2: R	EF review	checklist of	relevant	items
--	------------	------------------	--------------	----------	-------

Item	Comment
Details of:	Section 1.1
- The proposed activity.	
- Relevant legislation and policies.	Section 1.5
- Relevant plans	Appendix B
A description of the site and surrounding environment.	Section 3
Preparation of a DSI that concludes there is a low risk of contamination and that the site is suitable for the use of the site as a school	Section 12
Address all the potential sources of contamination mentioned	Section 6 and Section 11
Summarise investigations undertaken and conclude that contamination risk has been appropriately addressed.	Executive Summary and Section 12
DSI concluded that the proposal would not be likely to result in significant environmental effects as a result of contamination and/or contamination management.	Section 12
Mitigation measures recommended	Section 13

3 Site Identification and Surrounding Environment

3.1 Location and details

MPPS is located at 110 Wharf Road, Ermington and is situated within the local government area (LGA) of the City of Parramatta. The site is legally defined as Lot 3 of Deposited Plan (DP) 535298 and is currently zoned as 'SP2 – Infrastructure Educational Establishment' as per the Parramatta Local Government Environmental Plan (PLEP) 2023.

The investigation area is an open green space for use as a playing field within the MPPS school grounds with an approximate area of 6,188 m² and is proposed to be developed into a new carpark and pedestrian walkways under the revised developmental plans. The investigation area details have been summarised in **Table 3**.

Table 3: Site identification

Site Details	Description
Site address:	110 Wharf Road, Ermington 2114 NSW
Title identification:	Lot 3 in Deposited Plan (DP) 535298
Site area:	0.62 ha
Area of Investigation	6188.88 m2
Council Area:	City of Parramatta Council
Land Use Zoning:	SP2- Infrastructure Educational Establishment
Current Site Owner:	Department of Education, NSW
Current/Future Land Use:	Educational purposes/school (primary school)
Local Environmental Plan	Parramatta Local Government Environmental Plan (PLEP) 2023

3.2 Surrounding features

The surrounding land uses are summarised in Table 4.

Table 4: Surrounding land uses.

Direction	Description
North	Commercial industrial buildings housing various businesses border the sampling area to the north. Hope Street is to the immediate north. Beyond Hope Street is the site for the new Melrose Park development.
East	Low density residential properties situated along Wharf Road, followed by Lancaster Avenue, Jennifer Park Playground and Cobham Avenue. The Ryde Parramatta Golf Club is situated further to the east.
South	Beyond the southern school boundary is Mary Street, followed by a dermatologist and a timber supplies business. South of these buildings is a small car park at the southern end of Wharf Road that leads to a boat jetty. The Parramatta River is approximately 300 m south of the site boundary and flows east.

Direction	Description
West	Waratah Street lies immediately beyond the school boundary, which features various light to medium commercial industrial properties. Approximately 200 m west lies Ford and Hyundai service centres.

4 Environmental setting

The site's environmental setting was developed from a desktop study conducted as part of the Preliminary Site Investigation (PSI), (ADE, 2023) and included a review of site topography, geology, soil landscapes, hydrogeology, and other relevant information from readily available sources. The environmental setting has been summarised in **Table 5**.

Attribute	Description
Topography	The site is located on the western side of Wharf Road. The site surface was generally flat with a slight dip in elevation occurring towards the west side of the site. Relative levels (RL) of the site were 14 meters Australian Height Datum (AHD) in the north of the site and 10m AHD on the western border.
Site drainage	The site surface was mostly covered in grass with many buildings having open or raised undersides. Stormwater drains were observed from buildings flowing directly into the soil. Rainwater is likely to collect in gutters and downpipes, followed by pooling on the ground surface, then vertical percolation through the topsoil and underlying residual soil materials.
	Rainwater transported through overland flow is likely to be transported along local roads and stormwater systems towards the south-west part of the site, before ultimately discharging into Paramatta River.
Nearest surface water features	The investigation area sits approximately 300m south of the Parramatta River, with Archer Creek situated roughly 400m to the east of the site.
Local geology and soil	The Sydney 1:100,000 Soil Landscape Series Sheet 9130 (NSW Department of Climate Change. Energy, the Environment and Water, 1983), indicates that the site overlies soil of the Residual Lucas Heights (RElh) landscape comprising of gently undulating crests and ridges on plateau surfaces of the Mittagong Formation. Local relief 30m, slopes <10%. The Mittagong formation comprises of interbedded shale, laminate and fine to medium grained quartz sandstone.
	Soils typically consist of hard setting yellow podzolic soils and yellow sloths at moderately deep depths (50-150cm). (Chapman and Murphy, 2002). The Sydney 1:100,000 Geological Series Map indicates the site is underlain by the Wianamatta group (Rh) which consists of Medium to coarse-grained quartz sandstone, very minor shale and laminate lenses.
Hydrogeology & Groundwater	The underlying soil in the area generally consists of porous, extensive aquifers of low to moderate productivity.
	There were no registered groundwater wells at the site or within a 500 m radius of the site.
	Groundwater is generally anticipated to flow in a south to south-westerly direction, towards Parramatta River, consistent with local topography.

Table 5: Environmental setting,

	The Sharing and Enabling Environmental Data (SEED) interactive mapping tool published by the NSW Department of Planning, Industry and Environment show that the site and surrounding area does not encroach on any aquatic, terrestrial or subterranean Groundwater Dependent Ecosystems (GDE). The closest GDE is the riparian area associated with Parramatta Road situated approximately 100 m south of the southern site boundary.
Acid sulfate soil risk	The probability of acid sulfate soil risk at the site is low. The site is mapped outside of any known occurrence of acid sulfate soils in the Parramatta Local Environmental Plan 2023 (LEP).
	A review of the Acid Sulfate Soils (ASS) (LEP, 2023) identified the Site to be located upon Class 5 acid sulfate soils risk management zone, meaning that "development consent is required for the carrying out of works within 500m of adjacent Class 1, 2, 3 or 4 land that is below 5m AHD and by which the water table is likely to be lowered below 1m AHD on adjacent Class 1, 2, 3 or 4 land". The site is situated approximately 100 m north from Archer Park that forms part of the riparian zone of Parramatta River and which is Class 2 land where PASS may be found on and below the natural ground surface.

5 Site History and Previous Environmental Investigations

5.1 Site history

Melrose Park Public School was first established in 1945 and has been used solely for education purposes since. Over the last approximately 80 years, the school has seen ongoing development to meet the increased demand including demountable structures, amenities (such as outdoor play equipment, overhead shade etc.), a library, a school hall, a kitchen garden and a bathroom block. Industrial expansion in neighbouring properties has continuously occurred since the 1960s.

5.2 Previous Environmental Investigations

From the findings of the previously completed PSI (ADE, 2023) and DSI (ADE 2024), the investigation area was inferred to pose a low contamination risk. The school site itself has no historical contamination sources, and potential risks identified mainly stem from offsite factors. A summary of previously completed investigations has been provided in the following sections.

5.2.1 (ADE, 2023). Phase I - Preliminary Site Investigation

In 2023, ADE completed a PSI (ADE, 2023) for Melrose Park Public School which included a review of available desktop information (including historic aerials and land titles), a site inspection to assess for potential sources of contamination on and off-site and development of a CSM for the proposed redevelopment. The key findings from ADE (2023) are articulated below:

- The area of the school was primarily used for rural residential or agricultural purposes until 1945 when Melrose Park Public School was established.
- Sources of potential contamination included:
 - Due to the nature of construction from the 1940s to 1960's and the prevalent use of asbestos and lead materials during this time period, potential asbestos containing material (ACM) and or lead-containing products may have impacted the surficial and/or upper soil profile.

- Potential uncontrolled / uncharacterised imported fill materials of unknown origin which was likely used to engineer surfaces and foundations for current structures. Importation of fill of unknown origin across the site could potentially contain various contaminants of concern including heavy metals, OCPs, OPPs, PCBs, PAHs, TRHs and BTEX.
- OCPs / OPPs from general pest control as well as pesticides that could have been sprayed or injected on or underneath concrete slabs including arsenic to treat timbers.
- Potential oil and grease contamination due to significant run-off or flooding from adjacent major roads.
- Contamination due to degradation of student waste or "littering" into bushland area, for example aerosol sprays crayons, etc.
- Potential asbestos containing cement roof of warehouse immediately to the north of the site. Over time, asbestos roofs can deteriorate and release small amounts of asbestos fibres.
- Potential impact from petrol or oil spillage from used car dealership immediately north of the site.
- Former chemical, pharmaceutical and veterinary production and waste generation at the former Reckitt Benckiser and Pfizer facilities to the north and upgradient of the site.
- An asbestos register last revised by Greencap on 25 July 202 was reviewed by ADE. The register noted that no previous historical fibro in ground investigations or events have been recorded against the school. The register noted that the following three buildings contain asbestos:
- The Library/Administration timber clad building (B00A) located in the southeast corner of the site: ACM present in the eaves, walls and ceiling linings as well as fragments in underfloor voids.
- The general learning timber building (B00B), located adjacent to B00A: ACM present in eaves, linings and in fragments in underfloor void.
- The small services brick clad building (B00D): located in the eastern portion of the site, just north of the assembly area: Asbestos containing sheeting in the eaves, linings and ceilings.

ADE (2023) concluded there is a low to medium potential for contamination to have occurred on-site as a result of the past and present land uses with the site being suitable for the proposed development pending an intrusive investigation.

5.2.2 ADE (2024). Phase II - Detailed Site Investigation

In 2024, ADE completed a DSI (ADE, 2024a) for Melrose Park Public School that included an intrusive investigation of the eastern portion of the school grounds. The subject area comprised the central and eastern portion of MPPS, with a combined area of approximately 1.5 hectares (ha). The DSI included the following components:

- Review of the site's history, including a review of the PSI (ADE, 2023);
- Desktop study of the site's condition and its surrounding environment;
- Site walkover and visual inspection;
- Limited intrusive investigation; and
- Preparation of a DSI report outlining the findings of the investigation.

The soil investigation program including the collection and analysis of samples from a total of twenty-seven (27) locations:

- Sixteen (16) test pits advanced to depths ranging from 0.45 to 0.95 meters below ground level (m BGL) via mechanical excavation.
- One (1) borehole manually advanced to 0.25 mBGL by hand auger.

- Nine (9) boreholes advanced to depths ranging from 1.3 to 4.42 mBGL for a combination of soil contamination assessment and geotechnical purposes.
- One (1) borehole advanced to 12.33 mBGL for a combination of soil contamination assessment and geotechnical purposes.
- A soil vapour screening program involving the installation of two (2) soil vapour wells and the field measurement from those wells at BH05 and BH07.

Semi-quantitative field screening was also completed for volatile organic compounds (VOCs) in soil, undertaken at each sampling location using a calibrated photo-ionisation detector (PID).

ADE reported the following findings from the DSI:

- The soil sampling undertaken during this investigation reported concentrations of contaminants of potential concern (CoPCs) below the adopted site acceptance criteria for the proposed land use;
- The site surface was free from any visual signs of contamination (staining, olfactory). Similarly, no staining or odours were detected in the test pits excavated.
- No evidence of infrastructure associated contaminating activities was identified at the site;

Following the desktop study and the intrusive assessment, ADE considered there was a low risk of contamination in soil that has occurred due to past and current activities undertaken at the site, and the site was considered suitable for the ongoing land-use as a primary school.

5.3 Assessment of historical information integrity

The veracity of the information obtained as part of the site history is considered to be moderate to high. The site history assessment is generally considered to be of moderate to high integrity.

6 Preliminary Conceptual Site Model

A conceptual site model (CSM) is an iterative method required by ASC NEPM (2013) that defines the potential sources of contamination, the methods/ pathways through which exposure/ migration may occur and the receptors (human and environmental) that may foreseeably be exposed to contamination. Where any of the source, pathway or receptor is missing, then the risk linkage status can be considered incomplete, and there is no unacceptable risk.

6.1 Potential Contamination Sources

The following potential contamination sources for the investigation area were identified as follows;

- Potential ACM and or lead containing products used during historic construction may be present within the upper soil profile.
- Potential for contamination via imported fill materials used in the construction of the sports field.
- Potential pesticide/herbicide contamination of the surficial and/or upper soil profile due to ongoing maintenance works.

6.2 Chemicals of potential concern

The chemicals of potential concern (COPCs) were chosen for due diligence to account for a wide range of potential environmental contamination and, ensuring the most sensitive receptors are adequately protected from potential health risks and include:

- Heavy metals
- Total recoverable hydrocarbons (TRHs)
- Benzene, toluene, ethylbenzene and xylenes (BTEX)
- Polycyclic aromatic hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)
- Organochlorine and organophosphorus pesticides (OCPs/OPPs)
- Asbestos
 - o Bonded
 - \circ Friable asbestos (FA) / asbestos fines (AF).

6.3 Potential Exposure Pathways

6.3.1 Human

The potential pathways by which contamination could reach potential human receptors are considered to be:

- Direct contact (dermal).
- Ingestion (incidental/ occasional).
- Inhalation (dust/ volatilised organic compounds/ soil particles/ fibres)

6.3.2 Ecological

Potential risk pathways for ecological receptors could include:

• Discharge into nearby surface water of Archer Creek or Parramatta River.

6.4 Sensitive receptors

Potential human receptors for the investigation area include:

- Current and future users of the investigation area including students and staff.
- Residents of neighbouring properties and surrounding users.
- Construction / landscaping workers involved with any future works onsite.
- Current and future maintenance workers undertaking sub-surface maintenance works.

Potential ecological receptors for the investigation area include:

- Flora and fauna that inhabit or travel through the investigation area.
- Soil processes including organisms and fauna within the top 2 metre soil profile (i.e. the rhizosphere/ root growing zone).
- Nearby surface water bodies (Archer Creek and Parramatta River).

6.5 Source-Pathway-Receptor linkages

The risk linkage status between the potential sources of contamination and sensitive receptors was summarised within **Table 4.** The statuses considered were:

- Complete (i.e., there is a real risk from contamination to sensitive receptors)
- Potentially complete (i.e., there is a potential risk...)
- Potentially incomplete (i.e., there is unlikely to be a risk)
- Incomplete (i.e., there is no unacceptable risk).

The preliminary CSM has been summarised in **Table 6** below.

Potential contamination sources and COPC	Potential Exposure pathways	Receptor	SPR Linkage – risk status	Notes
Hazardous building materials (Asbestos containing material used in nearby structures and potential use of lead paint).	Human - Dermal contact, ingestion, inhalation	Human – current and future investigation area users, primary school children, teachers, workers neighbours & visitors	Potentially Incomplete - Low Risk	 Invest surfac any invest
	Ecological – Vertical and lateral migration of potential contaminants through the soil, leaching and migration via groundwater, Plant uptake	Ecological - Rhizome soils, investigation area fauna, underlying soil processes and soil fauna, groundwater, off site surface water		
Potential for uncontrolled fill material	Human - Dermal contact, ingestion,	Human – current and future	Potentially Incomplete - Low Risk	Resid
(Uncontrolled or uncharacterised imported fill materials - potentially historically used to fill the investigation area during the construction	Innalation	children, teachers, workers neighbours & visitors		uncor inves exist
of current structures.	Ecological – Vertical and lateral	Ecological – Investigation area fauna,		mana
Heavy metals, TRH, BTEX, PAH, pesticides, asbestos).	through the soil, leaching and migration via groundwater, Plant uptake	underlying soil processes and soil fauna, groundwater, off site surface water		
Historical potential for herbicides and pesticide applications (Potential for historical applications during ongoing maintenance of the school's outdoor spaces or used in historic agricultural operations OCPs, OPPs, Arsenic).	 Human - Dermal contact, ingestion, inhalation Ecological – Vertical and lateral migration of potential contaminants through the soil, leaching and migration via groundwater, Plant uptake 	 Human – current and future investigation area users, primary school children, teachers, workers neighbours & visitors Ecological – Investigation area fauna, underlying soil processes and soil fauna, groundwater, off site surface water 	Potentially Incomplete - Low Risk	 Prior area purpo The g may i Resid from invest exist mana As the groun pathy

tigation of potential asbestos / lead paint in ce soils requires investigation to establish whether risk linkages exist that may require further tigation and/or management.

lual contaminants / hazardous materials in ntrolled imported fill material (if any) requires tigation to establish whether any risk linkages that may require further investigation and/or agement.

to becoming a school c.1945, the investigation was used for rural residential / agricultural oses.

general upkeep of school buildings and gardens include the use of pesticides and herbicides.

lual impact from historical chemical / fuel usage agricultural / gardening operations requires tigation to establish whether any risk linkages that may require further investigation and/or agement.

e proposed works are not anticipated to intercept ndwater, groundwater as a receptor and a way has been noted as an incomplete linkage.

7 Site Assessment Criteria

The site assessment criteria were developed as per the following environmental legislation, guidelines, code of practices and industrial advice:

- NEPC. (2013). The National Environmental Protection Measure (ASC NEPM), 2013 Amendment.
- Western Australian Department of Health [WA DoH]. (2009). Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia. Perth, Australia.

Despite the fact that the future proposed land-use is for a primary school, the Tier 1 screening criteria for a land use scenario under ASC NEPM (NEPC, 2013) for a "residential with garden access, including primary schools (Setting A)" were conservatively adopted to be most protective of the identified sensitive receptors. This report applies the relevant criteria investigation levels to identify contaminants and/or areas of contamination that potentially pose a risk to human or environmental health.

7.1 Health-based investigation levels

The health investigation levels (HILs) are applicable for assessing human-health risk via all relevant pathways of exposure. The HIL A criteria is the most conservative HIL criteria and is based on the protection of human receptors in residential land use scenarios with garden/accessible soil, which also includes childcare centres, preschools and primary schools. The adopted HIL values are summarised in **Table 7**.

Analyte	HIL A (mg/kg)
Arsenic (total)	100
Cadmium	20
Chromium (VI)	100
Copper	6,000
Lead	300
Mercury (inorganic)	40
Nickel	400
Zinc	7,400
Carcinogenic PAHs (as BaP TEQ ¹)	3
Total PAHs	300
Total PCBs	1
DDT+DDE+DDD	260
Aldrin and Dieldrin	7
Chlordane	50
Endosulfan	300
Endrin	10
Heptachlor	7
Hexachlorobenzene	10
Methoxychlor	400
Chlorpyrifos	170
Cyanide (free)	250
Phenols	3,000

Table 7. Health investigations levels for soil contaminants.

Notes to Table 5

1-Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

Table 8. Toxic equivalency factor (TEF) of individual PAH species.

7.2 Health screening levels

Health screening levels (HSLs) have been developed for selected petroleum compounds and fractions and apply to human health risk assessment via inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. The soil texture for applications of HSLs at the investigation area is "clay".

ASC NEPM (2013) presents HSL A (Low density residential) Tier 1 screening criteria for BTEX, naphthalene, TRH fractions C6-C10 and C10-C16 for vapour intrusion. Values for clay with depth criterion to < 1 metres was used. The HSL A criteria are summarised in **Table 9**.

Table 9. Health screening levels for soil contaminants

Analyte	HSL A (mg/kg) Low density residential (Clay)	HSL A – Direct Contact (mg/kg) Low Density Residential
Benzene	0.7	100
Toluene	480	14,000
Ethylbenzene	NL	4,500
Xylene	110	12,000
Naphthalene	5	1,400
TRH: C6 – C10(F1)	50	4,400
TRH: C10 – C16 (F2)	280	3,300
TRH: C16 – C34 (F3)	NA	4,500
TRH: C34 – C40 (F4)	NA	6,300

Notes to Table 7

*To obtain F1, subtract the sum of BTEX from the C_6 - C_{10} fraction. *NL – No limit.

The HSL-A criteria outlined within the ASC NEPM (NEPC, 2013), based on the guidance provided in the WA DoH Guidelines (WA DoH, 2009), was adopted to assess the presence of asbestos in soil. These are shown in **Table 8.**

The guidelines specify that the surface should be free of visible asbestos (refer to **Table 8**). The concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):

% w/w asbestos in soil = % asbestos content x bonded ACM (kg) Soil volume (L) x soil density (kg/L)

Table 10. Health screening levels for asbestos contamination in soil.

Analyte	HSL A (mg/kg)
Bonded ACM ¹	0.01% w/w
FA and AF (friable asbestos) ²	0.001% w/w
All forms of asbestos	No visible asbestos for surface soil

Notes to Table 8

*ACM – Bonded asbestos containing material

*FA – Fibrous asbestos; AF – Asbestos fines

7.3 Management Limits

Consideration of Management Limits for petroleum hydrocarbons will be undertaken to assess whether the reported soil conditions have the potential to pose a risk to buried infrastructure, or the formation of non-aqueous phase liquid (NAPL). Values for fine grained soils from Table 1 B (7) of Schedule B1 will be adopted as a conservative approach.

A summary of the adopted TRH management limits for this investigation area is provided in **Table 11**.

Chemical	Management Limits for TRH (mg/kg dry soil) Residential, parklands and public open space (Fine texture soil)	
F1 C ₆ -C ₁₀	800	
F2 C ₁₀ -C ₁₆	1,000	
F3 >C ₁₆ -C ₃₄	3,500	
F4 >C ₃₄ -C ₄₀	10,000	

Table 11. Management limits for TRH fraction in soil.

7.4 Ecological Investigation Levels

The ASC NEPM (2013) presents the methodology for deriving terrestrial EILs using both fresh and aged (i.e. >2 years old) contamination for soil with "urban residential/ public open space" land use scenario.

The methodology has been developed to protect soil processes, soil biota (flora and fauna) and terrestrial invertebrates and vertebrates and the resultant EILs are applied to the top 2m of the soil profile, where the majority of processes occur, and organisms reside.

As there is no proposed change in the land-use for the investigation area, the adopted scenario is for Urban Residential and Open Space/ Recreation. Investigation area specific EILs have been derived in this DGI and comprise the sum of ambient background concentrations (ABCs) and added contaminant limits (ACLs).

The ACL concentrations ascertained for representative locations are usually based on the site-specific results for either pH alone, or pH and cation exchange capacity (CEC) for metals (Cr, Cu, Ni & Zn). The specific soil properties analysed at one sample location in a previous investigation by ADE (2024a), in natural silty clay and used to calculate the EILs are listed below:

Table 12. CEC, pH and clay content values that used to calculate investigation area-specific EILs.

Sample ID	CEC (meq/100g) pH		Clay Content (%)		
TP1112-0.4 – 0.92	4.4	4.8	44		
TP106-0.3-1.1	2.6	5.1	54		
TP108-0.5-1.0	3.7	5.1	61		
Average	3.6	5.0	53		

The EIL criteria presented for arsenic (As), naphthalene and DDT are generic EIL values irrespective of their physiochemical properties sourced from Table 1(B)5 of Schedule B1 of the ASC NEPM (2013). The EILs to be adopted for this assessment are summarised in **Table 13**.

Table 13. Investigation area specific Lie citteria.		
Chemical	Specific EIL	
Cr ^{2,6}	410	
Cu ^{2,6}	85	
Ni ^{4,6}	20	
Zn ^{5,6}	180	
As ¹	100	
Pb ¹	1,100	
Naphthalene ¹	170	
DDT ¹	180	

Table 13. Investigation area-specific EIL criteria

Notes to Table 11

1- Generic EIL, as per Table 1B (5) of Schedule B1 of ASC NEPM (2013).

2- Cr ACL calculated using % clay, % Fe content and adopted as EIL, as per Table 1B (2) of Schedule B1 of NEPM (2013).

3- Cu ACL calculated using CEC, pH data, % organic carbon content, % Fe and adopted as EIL, as per Table 1B (2) of Schedule B1 of NEPM (2013).

4- Ni ACL calculated using CEC and % Fe data and adopted as EIL, as per Table 1B (3) of Schedule B1 of NEPM (2013).

5- Zn ACL calculated using a conservative modelled pH, % Fe and CEC data and adopted as EIL, as per Table 1B (1) of Schedule B1 of NEPM (2013).

6- Aged ACLs derived assuming a low traffic volume.

7.5 Ecological Screening Levels

For petroleum hydrocarbons, ESLs have been derived in ASC NEPM (2013) based upon fraction ranges of hydrocarbons, BTEXN component and benzo(a)pyrene (BaP) together with soil texture classes. These ESLs are of low reliability except for the volatile and semi-volatile hydrocarbon fractions which are of moderate reliability. The ESLs are applicable for assessing risk to terrestrial ecosystems and will be adopted for the investigation to be protective of soils in an urban residential and public open space land use scenario.

The adopted ESLs are designed to be protective of soil fauna, soil processes and plants. The ASC NEPM (2013) states that these factors only apply within the rhizome (i.e. zone in the top two metres of soil) and as such ESL criteria need not be applied to chemical results below this depth. ESL threshold criteria for fine-grained soils are summarised in **Table 14**.

Table 14. Ecological screening levels for soil contaminants.

Chemical	ESL – Urban Residential and public open space (for fine grained soils) (mg/kg)
F1 C6-C10	180
F2 C10-C16	120
F3 >C16-C34	1300
F4 >C34-C40	5600
Benzene	65
Toluene	105
Ethylbenzene	125
Xylenes	45
Benzo(a)pyrene	1.4

7.6 Aesthetics

The aesthetic quality of accessible soils should be considered even if analytical testing demonstrates that concentrations of COPCs are within the SAC. There are no quantifiable guidelines in determining if soils are appropriately aesthetic, however ASC NEPM (2013) does indicate that professional judgement concerning the quantity, type and distribution of foreign materials and/ or odours about the specific land use should be employed.

The following scenarios (but not exclusively) would trigger further aesthetic assessment:

- Anthropogenic soil staining; and
- Odorous soils, i.e., petroleum hydrocarbon odours or hydrogen sulfidic odours in soil.

7.7 Statistical treatment

Analytical results from the soil sampling program are statistically analysed to determine their applicability to the assessment and recommendation of remedial actions in the event of site assessment criteria exceedances. The statistical analysis will be applied on a zone basis, if required.

A contaminant concentration in the soil will be deemed a non-exceedance if:

- The maximum concentration of all samples meets the specified acceptance criteria; or
- The 95% upper confidence limit (UCL) of the mean is below the acceptance criteria considering the following:
- No individual exceedance is greater than 2.5 times the acceptance criteria; and
- The standard deviation of the results should be less than 50% of the relevant investigation or screening level.

If the 95% UCL of the arithmetic mean of a contaminant concentration is above the acceptance criteria outlined in the ASC NEPM (NEPC, 2013), then the soil will be classified as contaminated and will require further assessment, remediation, removal or management.

If the 95% UCL of the arithmetic average concentrations is below the acceptance criteria, and no concentrations are at a hotspot level, slight elevations above the acceptance criteria may be considered to pose an insignificant human health or environmental risk. The location will hence be considered a non-exceedance requiring no further assessment, remediation, removal or management. The statistical analysis for the assessment of ACM is not considered appropriate.

7.8 Waste Classification

To chemically characterise waste for off-site disposal criteria was adopted from NSW EPA (2014) *Waste* Classification Guidelines: Part 1 - Classifying Waste. For chemicals, three possible waste classifications are possible including:

- General Solid Waste.
- Restricted Solid Waste.
- Hazardous Waste.

When characterising waste some additional considerations must be made including whether the waste is preclassified (e.g., any presence of asbestos is pre-classified as "special waste – asbestos waste") and whether the

waste is putrescible or non-putrescible in nature. NSW EPA (2014) provides a six-step process to determine the final waste classification for off-site disposal of waste.

8 Investigation Methodology

8.1 Sampling design and Rationale

A systematic sampling regime was considered appropriate to adequality characterise the potential contamination status of the investigation area. The sampling regime involved the advancement of 17 sampling locations which satisfies the minimum required sampling density specified as per Table 2 within the *NSW EPA Sampling design part 1 – application (Contaminated Land Guidelines)* (2022).

The distribution of individual sample locations was defined by on-site limitations and restrictions such as the presence of underground services, accessibility limitations, the presence of pre-existing infrastructure and the adopted lateral/vertical investigation limits. For example, areas to the north and south of the investigation area with heavy tree cover. Where possible, samples were collected and selected for analysis across varying depths within a range of soil lithologies, including imported fill materials, residual fill materials and virgin soils. Samples exhibiting olfactory or visual signs of contamination were prioritised for analysis to capture a 'worst-case scenario'.

8.2 Field programme

8.2.1 Preliminary items

Preliminary works included the following:

- Review of previous investigations and findings from the desktop study of the investigation area.
- Preparation of safe work methods statement (SWMS) for fieldworks undertaken.
- Undertake a Before-You Dig-Australia (BYDA) online search of current utilities potentially running onto the investigation area.
- Supervising a qualified utility search subcontractor conducting a scan for underground services and marking out safe locations for intrusive assessment.

8.2.2 Intrusive investigation and soil assessment

The intrusive soil investigation was conducted on 14 January 2025 by suitably experienced environmental consultants from ADE which included the following:

- The advancement of 17 test pits to a maximum depth of 2.0 m BGL using a 5- tonne excavator.
- Samples of soil material were collected down the soil profile at each location
 - Subsurface observations were recorded on detailed bore logs with assessment of material type, texture, moisture, inclusions and indications of visual / olfactory contamination.
- Samples were collected in clean glass jars and bags supplied by the laboratory.
 - The jars were filled to capacity to ensure minimal headspace was present and placed directly into an ice filled chilled cooler for transportation to the laboratory.
- Asbestos sampling was undertaken at all locations.
 - At the test pit locations, 10 litre (L) samples were collected and sifted through a 7-millimetre (mm) sieve or colour contrasting plastic sheet to identify any potential shards of asbestos within the sample.

- A discrete 500 millilitre (ml) sample was collected for submission to the laboratory for AF/FA analysis.
- Semi-quantitative field screening for volatile organic compounds (VOCs) in soil was undertaken at each sampling location using a calibrated photo-ionisation detector (PID) device (see Appendix F for calibration certificate). Screening involved placing the soil sample in a resealable plastic zip lock bag, agitating the sample then inserting the PID tip into the headspace and recording the reading.
- Collection of 2 intra-laboratory duplicate samples and 2 inter-laboratory duplicate for quality assurance (QA) and quality control (QC) purposes.

8.2.3 Laboratory analysis

Samples were transported in chilled coolers to laboratories accredited by NATA for requisite analytical methods under full chain-of-custody documentation.

All soil samples were submitted to:

- Sydney Laboratory Services (SLS) Address: 4/10-11 Millennium Ct, Silverwater NSW 2128; and
- Envirolab Servies Sydney (Envirolab) Address: 12 Ashley St, Chatswood NSW 2067.

SLS was the primary laboratory while Envirolab was the secondary laboratory that received the interlaboratory duplicate samples.

The analytical schedule has been summarised in Table 15.

Table 15: Summary of analytical schedule

Analytes	Number of primary samples analysed	Number of duplicate and triplicate samples analysed
Heavy Metals *	26	2
BTEX	26	-
TRH	26	2
РАН	26	2
OCP/ OPP	26	2
РСВ	26	2
Asbestos w/w	17	-
Asbestos +/-	9	-
рН / ЕС	3	-

Notes to Table 13

Refer to abbreviations table for definitions of abbreviations

9 Results and Discussion

9.1 Field observations

Field observations were obtained to understand pre-existing conditions. Parameters including soil, sub-soil geology and screening for volatile organic compounds was performed to increase the confidence of the investigation. The results and outcomes are summarised below.

9.1.1 Investigation area features

The investigation area was situated at the western portion of the school grounds forming part of the sports field with landscaped grass across the surface. Along the northern and southern boundaries of the investigation area, heavy tree cover was present, allowing no access. During fieldworks, ADE noted that the investigation area surface was free from any visual signs of contamination. No discoloration or odours were noted and no foreign materials including potential ACM (except for small fragments of terracotta at TP111) were identified across the investigation area surface.

Photographs of the investigation area and the subsurface conditions are presented in **Appendix D** with **Figure 2** presenting investigation area features and sampling locations.

9.1.2 Soil profile

The typical soil stratigraphy encountered during the field investigation is detailed in **Table 14** (refer to **Appendix D – Photolog** and **Appendix E – Test Pit Logs**). The soil lithology generally consisted of shallow fill overlaying natural clay encountered from approximately 0.4 m BGL. The encountered subsurface profile has been summarised in **Table 16**.

Table 16. Soil Profile			
Lithology	Approximate Depth Range (m BGL)	Material Description	General Observations
Topsoil / Engineered Fill	0.0 — 0.5	Silty CLAY	Topsoil was typically encountered within un-disturbed areas of the investigation area and was typically limited to the top 0.5 m lithological strata.
Natural / Residual Clays	0.3 – 1.1	Sandy CLAY	Typically occurred below the upper lying topsoil, engineered fill or general fill materials. The soil profile was observed consistently observed to occur at shallow depths across the investigation area.

9.1.3 PID Field Screening

Each soil sample was screened for the presence of VOCs using a PID. PID readings reported concentrations ranging from 1.2 ppm to 4.4 ppm. All PID readings were recorded below an interim actionable criterion (15-20 ppm). Refer to **Appendix E – Test Pit Logs** for individual PID readings and **Appendix F – Equipment Calibration Certificates** for the calibration certificate.

9.2 Soil Assessment

The following sections summarise the key outcomes of the soil assessment as per the ASC NEPM (NEPC, 2013) and other relevant codes of practice.

Tabulated laboratory results compared to the adopted SAC are presented in **Appendix G** with laboratory transcripts including chain of custody, sample receipt notification and certificate of analysis provided in **Appendix H**.

9.2.1 Human Health

All samples exhibited concentrations of analysed analytes below the tier 1 human health investigation and screening levels prescribed for low density residential land use (HIL/HSL – A).

9.2.2 Ecological Health

Each analysed sample returned concentrations below the investigation area-specific ecological health and screening criteria for low density residential land use (EIL/ESL – A).

9.2.3 Asbestos in Soil

No potential asbestos containing material (PACM) was identified across the soil surface or within any of the 10L gravimetric asbestos samples screened. No asbestos was detected within any of the subsequent 500mL soil samples analysed for AF/FA at the laboratory reporting limit of 0.1g/kg (AS4964:2004).

Due to the absence of PACM or confirmed detections at the laboratory PQL, the soils are considered suitable for a low density residential (HSL A) land use.

9.3 Preliminary Waste Classification Assessment

An indicative waste characterisation assessment was completed and presented in ADE (2024) which made the following conclusions:

- No asbestos was observed during sampling or identified in the samples submitted for laboratory screening.
- All chemical concentrations were below the contaminant threshold (CT) for General Solid Waste.
- The material was considered to be non-putrescible in nature.

Therefore, ADE (2024) provided an indicative waste classification of "General Solid Waste (non-putrescible)" for material within the investigation area. Note that this is considered indicative because the volume of material that may be generated by the activity and require disposal as waste is unknown and the minimum sampling density cannot be determined at this stage.

9.4 Duty to Report Contamination

For the purposes of section 60(3)(b) of the CLM Act, notification of contamination in, or on, soil on the land is required where:

• The 95 % UCL on the average arithmetic concentration of a contaminant in or on soil is equal to or above the HIL and/or HSL for that contaminant for the current or approved use of the respective on-site land, as specified in Section 6, Schedule B1 of the ASC NEPM (2013); or

- The concentration of a contaminant in an individual soil sample is equal to or more than 250% of the HIL and/or HSL for that contaminant for the current or approved use of the respective on-site land, as specified in Section 6, Schedule B1 of the ASC NEPM (NEPC, 2013); and
- A person has been or foreseeably will be exposed to the contaminant or a by-product of the contaminant.

Based on the results of this investigation, ADE considers there is not a duty to report contamination.

10 Quality Assurance and Quality Control

To carry out the assessment of the data, the US EPA Guidelines 'Guidance on Assessing Quality Systems' (US EPA, 2003) and 'Guidance on Systematic Planning using the Data Quality Objectives Process' (US EPA, 2006) were used. The guidelines provide general strategy on assessing data quality criteria and performance specifications for decision making.

The seven-step Data quality objectives (DQO) process adopted for this assessment is provided in Appendix C.

For the purposes of this review, the Quality Assurance / Quality Control (QA/QC) program adopted includes an assessment of laboratory QA/QC and field QA/QC comprising of intra-laboratory and inter-laboratory duplicates. Further details and information regarding the QA/QC program can be referred to in **Appendix I** and the calculated relative percentage difference (RPDs) between the primary and the intra- and interlaboratory duplicates are presented in **Appendix J**.

The results of the data quality assessment conclude that the analytical results are representative of the conditions of the sampling locations at the time of sampling and are directly usable for the purpose of this assessment.

11 Revised Conceptual Site Model

The completed intrusive investigation and quantification of COPC in collected soil samples did not identify a potentially unacceptable risk considering the current land-use setting. The updated CSM has been provided in **Table 17**.

Table 17: Updated source pathway receptor analysis,

Potential contamination sources and CoPC	Potential Exposure pathways	Receptor	SPR Linkage – risk status	Notes	
Hazardous building Materials (Asbestos containing material used in current nearby structures and potential use of lead paint).	Human - Dermal contact, ingestion, inhalation	Human – current and future investigation area users, primary school children, teachers, workers neighbours & visitors	Incomplete - Low Risk	•	According t 2021, as sur found in the
	Ecological – Vertical and lateral migration of potential contaminants through the soil, leaching and migration via groundwater, plant uptake	Ecological - Rhizome soils, Investigation area fauna, underlying soil processes and soil fauna, off site surface water		•	There is no
				•	Laboratory a concentration
				•	Asbestos wa or detected
Potential for uncontrolled fill material	Human - Dermal contact, ingestion, inhalation	Human – current and future investigation area users, primary school children, teachers, workers neighbours & visitors	Incomplete - Low Risk	•	No visual sig or within s Laboratory concentratio analysed sa
(Uncontrolled or uncharacterised imported fill materials - potentially historically used to fill the investigation area during the construction of current structures.	Ecological – Vertical and lateral migration of potential contaminants through the soil, Plant	Ecological – Investigation area fauna, underlying soil processes and soil fauna, off site surface water			
Heavy metals, TRH, BTEX, PAH, pesticides, asbestos).	uptake				
Historical potential for herbicides and pesticide applications	Human - Dermal contact, ingestion, inhalation	Human – current and future investigation area users, primary school children, teachers, workers neighbours & vicitors		•	At the time
(Potential for historical applications during ongoing maintenance of the school's outdoor spaces or used in historic agricultural operations		Incomplete - Low		herbicides a	
	Ecological – Vertical and lateral migration of potential contaminants through the soil, Plant	Ecological – Investigation area fauna, underlying soil processes and soil fauna, off site surface water.	Risk	•	Laboratory concentration
OCPs, OPPs, Arsenic).	uptake				and/or belo

to the Asbestos register last revised in 2021 (EDP, immarised in the PSI (ADE, 2023)) no asbestos was e investigation area.

history of buildings or structures around Area 3.

analysis supported observations with reported lead ions <SAC.

vas not observed during the intrusive investigation I in any samples analysed by the laboratory.

igns of uncontrolled fill, demolition waste at surface soil profile at any of the completed test pits. analysis supported observations with reported ions of contaminants < LOR and/or below SAC in the amples.

e of the investigation, ADE was not aware of any spillage or over-applications of pesticides and at the investigation area.

analysis supported observations with reported ions of OCPs and OPPs <LOR and arsenic below LOR ow SAC at all areas assessed.

12 Conclusions and Recommendations

Based on the findings of the investigation, the following is concluded:

12.1 Field observations

The following key field observations were identified during the investigation.

- The investigation area has historically and is currently being utilised as an open playing field.
- Observations of sub-surface soils at the locations assessed did not note any visual / olfactory indications of contamination or asbestos.
- The investigation area primarily consisted of a mixture of topsoil (i.e., Silty CLAY) followed by shallow virgin soil materials consisting primarily of residual clays (i.e., Sandy CLAY).
- In field PID readings ranged from 1.2 to 4.4 ppm which is below the adopted interim action criteria or 15-20 ppm.

12.2 Soil Assessment

All soil samples returned concentrations below the tier 1 health investigation and screening criteria assigned for low/density residential (Setting A). No samples exhibited concentrations above the investigation area-specific ecological SAC within any of the samples analysed. No asbestos was observed during the 10L asbestos gravimetric screening or detected within any of the representative 500mL soil samples analysed for asbestos (AS4964:2004).

12.3 Preliminary Waste Classification Assessment

Based on a preliminary comparison of the soil results against the criteria outlined within the *NSW EPA Waste Classification Guidelines 2014*, the in-situ soil materials appear to be consistent with the criteria assigned for 'General Solid Waste (non-putrescible)'. Further consideration may be employed to verify if the underlying natural soils comply with the definition of 'Virgin Excavated Natural Material (VENM)' as defined by the POEO Act 1997.

12.4 Limitations, uncertainties and assumptions

Due to constraints such as the presence of pre-existing dense vegetation around the periphery of the investigation area, the following are considered to be limitations, uncertainties and/or assumptions relevant to the investigation:

- The distribution of the completed sampling locations was primarily defined by both temporal and spatial restrictions onsite (i.e., accessible areas). Due to the presence of dense vegetation with select areas of the investigation area, the visual inspection and sampling was limited to accessible areas only.
- The lateral limit and vertical limit of the investigation is defined within *Appendix III Data Quality Objectives.* Contamination may be present within areas which have not been adequately assessed or at depths greater than the prescribed investigation limit.
- A further assessment should be performed if any of the following conditions are achieved:
 - A change in land-use is identified.

- Significant changes to the investigation area which may result in a change in the contamination status (e.g., the importation of uncontrolled fill).
- $\circ~$ The discovery of any unexpected finds which are not consistent with the findings of this investigation.

12.5 Recommendations and Legal Considerations

The following outline the recommendations and legal obligations associated with the cessation of the investigation:

- Based on the data obtained during the investigation, it is in the opinion of ADE that the client does not have a duty to notify the NSW EPA under Section 60(3)(b) of the CLM Act 1997.
- Mitigation measures include the preparation of suitably management plans for construction and potential unexpected finds prior to site preparation and bulk earth works commencing and may include but not necessarily be limited to:
 - Construction environment management plan.
 - Soil and water management plan.
 - Noise and vibration management plan.
- All waste generated by the activity must be disposed in accordance with the POEO Act.
- A final classification in accordance with NSW EPA (2014) should be completed considering the minimum sampling densities for the volume of material, ensuring waste is disposed to suitably licenced facilities.

12.6 Land-Use Suitability Statement

Based on the data obtained during this investigation, it is in the opinion of ADE that the investigation area **is suitable** for its ongoing land-use as a primary school or residential with garden accessible soil (HIL/HSL-A) as defined by the ASC NEPM, 2013.

13 Mitigation Measures

The potential project environmental risks and recommended mitigation measures have been summarised in **Table 18**.

Potential Risk	Mitigation Measure	Reason for Mitigation Measure
Unexpected finds during development.	Develop and prepare an unexpected finds protocol (UFP) to be implemented during the demolition and construction phase of the activity.	An UFP details the actions to be taken when potential contaminated soil and/or material is encountered during the demolition and construction phase. In the event that contaminated materials are discovered, the UFP can be implemented.
Environmental harm during construction.	Develop and prepare a construction environmental management plan (CEMP) to be implemented during the course of demolition and construction phase of the activity.	A CEMP describes how activities undertaken during the construction phase of development will be managed to avoid or mitigate environmental or nuisance impacts, and how those environmental management requirements will be implemented.
Erosion and Sediment.	Develop and prepare a soil and water management plan/ sub-plan to prevent erosion and generation of sediment.	details the specific methods of erosion and sediment control that will be used to meet the specific site conditions at the various stages of construction.
Disposal of waste soils generated by construction.	Ensure all soil to be removed from the site as waste is classified in accordance with NSW EPA (2014) prior to leaving the site. Where possible, attempts to beneficially re-use waste either on site or off-site subject to application of the Resource Recovery Framework outline within the POEO Act.	Classification of soil helps determine whether soil can be reused, recycled, or needs to be disposed of in a controlled manner.

Table 18: Summary of Potential Risks and Mitigation Measures

14 Bibliography

- ADE (2023) Preliminary Site Investigation Melrose Park Public School, 110 Wharf Road, Melrose Park, NSW 2155, (ref: A101023.0436_PSI_v1f, dated: 1 November 2023).
- ADE (2024) Detailed Site Investigation Melrose Park Public School, 110 Wharf Road, Melrose Park, NSW 2155, (ref: A101023.0436.DSI.v1f, dated: 22 February 2024).
- Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.
- Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances.
- Herbet C. (1983). Sydney 1:100 000 Geological Sheet 941130, 1st edition. Geological Survey of New South Wales, Sydney.
- National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as Amended 2013) (ASC NEPM, 2013).
- NSW EPA. (2022). Sampling design guidelines Part 1. Application.
- NSW EPA. (2024). Contaminated Land Record of Notices from http://www.epa.nsw.gov.au/prcImapp/aboutregister.aspx
- NSW EPA. (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA. (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme 3rd Ed.
- NSW EPA. (2014). Waste Classification Guidelines Part 1: Classifying Waste. Sydney, Australia.
- NSW EPA. (2015). Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.
- NSW Government, Department of Planning and Environment. (2023), Soil and Land Information, accessed from The Sharing and Enabling Environmental Data (SEED) Portal [https://datasets.seed.nsw.gov.au/dataset/a62ae869-672f-493d-8fae-bfb32d820b74], date accessed 20/01/2024.
- NSW Government Education School Infrastructure. Asbestos Register (Hazardous Materials and Risk Assessment) Dundas Public School (4029) Last revised by EDP on 17 June 2021.
- Protection of the Environment Operations (Waste) Regulation 2014
- State Environmental Planning Policy (Planning Systems Resilience 2021)
- State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water 2011, Western Sydney Hydrogeological Landscapes: May 2011 (First Edition), accessed from The Sharing and Enabling Environmental Data Portal [https://datasets.seed.nsw.gov.au/dataset/bbceaab1-629c-4187-9332-23d899c9b52d], date accessed 2024-11-01.
- Government of Western Australia Department of Health (WA DoH). (2009). Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia.
- Work Health and Safety Act 2011.
- Work Health and Safety Regulation 2017.

Appendix A - Figures

Legend

Approximate Site Boundary

0 100 m 200 m © Department of Finance, Services & Innovation 2018

Produced by Datanest.earth

Title: Site locality

Client: Schools Infrastruc	Size: A3			
Project: SINSW Melrose Park	Drawn: KA	Figure No.: 1		
Date: 22-01-2025	Checked: AH	1		
Proj No: A101023.0436	Scale: 1:6500	Version: draft		

© OpenStreetMap contributors, © Department of Finance, Services & Innovation 2018

Produced by Datanest.earth

Title: Site Location and Sampling Design Plan

Client: Schools Infrastruc	Size: A3			
Project: SINSW Melrose Park	Drawn: KA	Figure No.: 2		
Date: 10-01-2025	Checked: AH	-		
Proj No: A101023.0436	Scale: 1:1089	Version: draft		

Appendix B – Proposed Development Footprint and Plan

SITE PLAN - PROPOSED GF

Appendix C – Data Quality Objectives

As stated in *Section 18 Appendix B* of Schedule B2 – Guideline on Site Characterisation in the ASC NEPM (2013), the data quality objectives (DQO) process is a seven-step iterative planning approach used to define the type, quantity and quality of data needed to support decisions relating to the environmental condition of a site.

The seven-step planning approach facilitates the development of qualitative and quantitative statements that specify the quality of the data required to support decision making within the scope of the investigation. This process utilises systematic planning and statistical hypothesis testing to differentiate between two or more clearly defined alternatives.

The seven-step DQO process adopted for this assessment is provided below.

Step 1 – State the Problem

This DGA is required for due diligence purposes to investigate the contamination risk status from current and historical use, prior to the proposed construction of a new carpark and conversion of the remaining space into an open space area.

A review of available historical information and previous environmental investigations have inferred that the investigation area has a low potential for contamination resulting from past and present land uses. Potential sources of contamination were identified to include the potential for uncontrolled fill to exist at the investigation area, potential historical application of pesticides and herbicides and the presence of hazardous building materials such as asbestos.

A supplemental environmental investigation was therefore undertaken to assess soil conditions within the investigation area to complement the revised proposed development. The following data collected was then used to evaluate and characterise the soil condition across the investigation area to inform the need for remediation and further management (if required).

Step 2 – Identify the Decision

The principal study questions can be identified as:

- Is the investigation area suitable for the proposed development in the context of potential contamination in the soils?
- Is there a potential ecological risk associated with contamination resulting from uncontrolled fill, hazardous building materials or historical herbicide or pesticide applications?
- Do the in-situ soil materials appear consistent with a 'General Solid Waste' classification as defined by the NSW EPA Waste Classification Guidelines 2014?

Step 3- Identify Inputs to the Decision

Samples of soil, groundwater and ground gas will be collected to answer the above principal study questions. Key considerations regarding the information inputs are:

- How many test pits should be advanced and where?
- Are there access restrictions present that may affect the location of test pits and the method(s) used for advancing test pits?

- To what depths should the test pits be advanced?
- At what depth should soil samples be collected?
- What are the contaminants of potential concern for soil?

The primary inputs to assessing the above include:

- Information available from previous contamination investigations carried out on-site as summarised in **Section 4**.
- Observations made by ADE during an investigation area walkover.
- Identified source-pathway-receptor linkages in the previous contamination investigations.
- Relevant regulatory guidelines.

Step 4 – Define the Boundaries of the Study

This step provides a detailed description of the spatial and temporal boundaries of the study area. These characteristics define the population of interest and any practical considerations for the study area (refer to **Table C1)**.

Spatial Boundaries	The works performed were restricted to the physical boundaries as shown within Figure 2, Appendix A . The remainder of the site is outside the scope of this assessment.
	The vertical boundaries of the proposed investigations are limited to a maximum depth 2.0 m BGL in soil. No assessment of groundwater was undertaken.
Temporal Boundaries	The investigation works were undertaken on the 14 th of January 2025.
Investigation Limit	The limit of the investigation has been undertaken to provide information as to the level and type of soil contamination within the investigation area.
Constraints	Time, cost, redesign, and accessibility are considered constraints to the investigation.
Receptors of Concern	The potential receptors of concern are outlined in Section 5.4.

Table C1. Summary of the Study Boundaries.

Step 5 – Develop a Decision Rule

The primary objectives of the proposed contamination investigation are to assess the potential for unknown contamination at the investigation area to present a risk in the proposed development as commercial infrastructure. The decision rules to assess the suitability of the investigation area will be as follows:

- QA/QC assessment indicates that the data is usable.
- Where contaminant concentrations for each sample are below the adopted investigation levels, then no further assessment/remediation is required with respect to that chemical/media/area; and
- Where contaminant concentrations are reported to exceed the adopted investigation levels, then additional investigation and/or management (including remediation) may be required.

In considering whether or not contaminant concentrations exceed investigation levels, statistical measures of central tendency will be used. The 95% upper confidence limit of the mean will be calculated for contamination levels in samples grouped spatially. Outliers or hotspots will be assessed as samples that contain greater than 250% of the investigation level. The distribution of the results will be assessed, and appropriate adjustments may be made prior to analysis if the data distribution is log-normal. This process is described further below.

Step 6 – Specify Acceptable Limits on Decision Errors

This step is to establish the specific limits on decision errors, which were used to determine the targets for limiting uncertainty in the data. Data generated during the environmental investigation needs to be appropriate to allow decisions to be made with confidence. The specific limits for this investigation were based on appropriate guidance from the NSW EPA, NEPC (2013), AS 2005 and appropriate indicators of DQIs used to assess QA / QC for field sampling and handling.

There are two sources of error for input to decisions:

- Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and
- Measurement errors, which occur during sample collection, handling, preparation, analysis and data reduction.

The null hypothesis for this study is:

Contaminant concentrations within the soil beneath the investigation area are above the adopted investigation levels.

These errors may lead to the following decision errors:

- Type I deciding that the soil and/or groundwater is not contaminated and, therefore, the investigation area is suitable for the proposed development when the reverse is true; and
- Type II deciding that the soil and/or groundwater is contaminated and, therefore, the investigation area is not suitable for the proposed development when the reverse is true.

The acceptable limit on decision errors is a 5% probability of a false negative (i.e., assessing that the average concentrations of CoPC are less than the adopted soil, groundwater and surface water investigation levels when they are actually greater than the investigation levels).

Where data sets are sufficiently populated, the 95% upper confidence limit (UCL) of the arithmetic mean will be used to calculate this probability. The 95% UCLs are to be less than the investigation level and standard deviation of the sample population shall be less than 50% of the investigation level. The investigation levels for assessment are nominated in **Section 6** of this report. The statistical approach is further elaborated in **Section 6**.

To assess the suitability of the analytical data obtained prior to making decisions, the data was assessed against Data Quality Indicators (DQIs) to assess precision, accuracy, representativeness, comparability, and completeness (PARCC parameters), as outlined in AS 2005. The acceptable limit on decision error was 95% compliance with the DQIs. The pre-determined DQIs specified for the investigation works are discussed below in relation to the PARCC parameters as summarised in **Table C2**.

	•	
Precision	•	Sampling and analysis of field blind duplicates and split replicates to be undertaken at a minimum rate of 1 pair per every 20 samples.
	•	Laboratory duplicate analysis to be undertaken by the testing laboratory at a minimum rate of 1 per 20 samples.
	•	Field and laboratory RPD values to be less than 30% for analytical results greater than (>) 30 times the laboratory LOR, less than (<) 50 % for analytical results between 10 and 30 times the laboratory LOR and a control limit of \pm the LOR if either the sample or duplicate value is less than 10 times the laboratory LOR. t LOR.
Accuracy	•	Laboratory surrogate spike recoveries were to be within 70 – 130% for all organic analyses (if applicable).

Table C2. Summary of Acceptable Limits on Decision Errors.

	 Laboratory control sample (LCS) recoveries to be assessed at a rate of one (1) sample per laboratory batch. LCS recoveries were to be within 70 – 130% (if applicable). Matrix spike (MS) recoveries are to be assessed at a rate of one sample per laboratory batch. LCS recoveries were to be within 70 – 130% (if applicable).
Representativeness	Appropriate sampling methods undertaken for all samples.All samples were extracted and analysed within holding times.
Comparability	 Sampling was completed in accordance with the recommended methods outlined within Section 5, Systematic planning for the collection of environmental data, in Schedule B2 of NEPM (2013), AS 2005 and ADE Standard Operating Procedures (SOPs) which are in line with industry standards.
	 Standard analytical methodologies were used by laboratories that were NATA accredited for the requested analyses.
	 Laboratory LORs were appropriate and consistent for the objectives of the validation assessment.
Completeness	 Field documentation complete and appropriate for all samples to meet the objectives of the assessment.
	 Sample description and CoC documentation complete and appropriate for all samples to meet the objectives of the validation assessment.
	 The sampling frequency and findings of the QA/QC sample review valid for >95% of samples.

Step 7 – Optimise the Design for Obtaining Data

The organisation of the data collection and analysis design for optimising the generation of data to satisfy the DQOs and the objective of the investigation has been achieved via the following procedures outlined in **Table C3.**

Table C3. Summary of Procedures to be Undertaken to Optimize the Design for Obtaining Data.

Pre-approved Work Plan	The investigation was requested to assess the concentrations of contaminants present in soils at the investigation area through the implementation of the components outlined within NEPM (2013), AS 4482.1 (2005) and AS/NZS 5667.1 (1998).
Compliance with EPA Guidelines	 Use of appropriate techniques for the sampling, storage, and transportation of samples.
	 Implementation of NATA certified laboratory using analytical procedures as outlined in ASC NEPM (2013).
	 Use of a secondary laboratory for split samples which is NATA certified for the required analyses.

Appendix D – Photographs

Photograph 1: Investigation area (facing south-east). Dated 14/01/2025.

Photograph 2: Investigation area (facing north-west. Dated 14/01/2025.

Photograph 3: Investigation area (facing West. Dated 14/01/2025.

Photograph 4: Investigation area (facing North-east. Dated 14/01/2025.

Photograph 5: Vegetation surrounding the investigation area. Dated 14/01/2025.

Photograph 6: Soil profile encountered within TP101. Dated 14/01/2025.

Photograph 7: Soil profile encountered within TP116. Dated 14/01/2025.

Photograph 8: Natural soil matrix found within 0.5-1.0 m BGL of TP114. Dated 14/01/2025

Photograph 9: Fill soil matrix observed in TP105, after 10L asbestos quantification. Dated 14/01/2025.

Photograph 10: Terracotta fragment observed in fill material encountered at TP111. Dated 14/01/2025.

Appendix E – Test-pit Logs

2	R				DI SULTI	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP101 PAGE 1 OF 1
CL	IENT	「_Joł	nSta	ff			PROJECT NAME Data Gap Investigation					
PR	OJE	CT NU	JMBE	R _ A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 V	/harf Road, E	rmington, NSW
DA	TE S	START	ED _				R.L. SURFACI	E			D	ATUM _m
EX	CAV	ATIO		NTRA	CTOR	W.A. Duncan Excavations	SLOPE				В	EARING
EQ	UIPI	MENT	<u>5-</u> T	onne	Excav	ator	COORDINATE	S_I	E 321	508.0	0 m N 62567	40.00 m
TE	ST F	PIT DIA	MET	ER	1300		LOGGED BY	LHO	2		C	HECKED BY <u>NM</u>
NC		·						t				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Conter	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	llets	М	S	1.7		Peat Inclusions
			-								TP101_0.0-0.1	
Ξ	-		- 0 <u>.5</u> - -		CLS	Sandy CLAY: Sandy CLAY, low plasticity, grey, medium-grained, well graded sand, trace rootlets	s and gravel	D	St		TP101_0.4-1.0	Trace Rootlets
			1.0									
			- - 1 <u>.5</u> - - - 2.0			TP101 terminated at 1m						

100	R			A I I I I I I I I I I I I I I I I I I I		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP102 PAGE 1 OF 1
CL	IENT	T <u>Joł</u> CTNL	nnSta JMBE	ff RA	10102	3.0436.01	PROJECT NAME Data Gap Investigation PROJECT LOCATION 110 Wharf Road Ermington NSW					
DA	TE S	START	ED _			COMPLETED	R.L. SURFAC	E			D	ATUM _m
EX	CAV	ATIO		NTRA	CTOR	W.A. Duncan Excavations	SLOPE				В	EARING
EC			<u>5-T</u>	onne	Excav	ator		S _ E	<u>= 321</u>	522.0	0 m N 62567	09.00 m
	DTES			ER	1300		LUGGED BY		<u> </u>		U	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш				***		FILL: Silty Clay, low plasticity, brown, trace rootle	its	M	S	1.5		Peat Inclusions
			_								TP102_0.0-0.1	
Ш			- 0 <u>.5</u> -		SC	Clayey SAND: CLAY, medium plasticity, reddish rootlets	brown, trace	D	F		TP102_0.4-1.1	
ш			_ 1 <u>.0</u>		CLS	Sandy CLAY: low plasticity, grey, medium graine graded, trace rootlets	d sand, well	D	F			
1			- 1 <u>.5</u> - - 2.0			TP102 terminated at 1.1m						

	R			A IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922	BOREHOLE NUMBER TP103 PAGE 1 OF 1					
СГ	IENT	Joł	nSta	ff			PROJECT NA	ME _	Data	Gap	Investigation	
PF	ROJE	CT NU	JMBE	R <u>A</u>	10102	3.0436.01	PROJECT LO	CATI	ON _	110 W	/harf Road, E	rmington, NSW
DA	ATE S	START	ED _			COMPLETED	R.L. SURFAC	Ε			D	ATUM m
EX	CAV	ATIO		NTRAG	CTOR	W.A. Duncan Excavations	SLOPE				В	EARING
EC	QUIP	MENT	<u>5-</u> T	onne	Excav	ator	COORDINAT	ES _E	<u>= 321</u>	522.0	0 m N 62567	01.00 m
TE	ST P	PIT DIA	MET	ER _1	1300		LOGGED BY	LHC	C		c	HECKED BY MT
NC	DTES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш			-		CL	FILL:Silty CLAY, low plasticity, brown, trace root	lets	D	S F	1.2	TP103_0.0-0.1	Peat Inclusions
			- 0 <u>.5</u> - -								TP103_0.3-1.0	
ш			1 <u>.0</u>		CL	CLAY: Medium plasticity, reddish brown, grey, v mottling	vith brown	D	F			
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GDT_2311/25			- 1 <u>.5</u> - - 2 <u>.0</u>									

1	R	1				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP104 PAGE 1 OF 1
CL	IENT	r Joł	nnSta	ff			PROJECT NAME Data Gap Investigation					
PR	OJE	CT NU	JMBE	R _ A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 W	/harf Road, E	rmington, NSW
DA	TE S	START	ED _				R.L. SURFAC	E			D	DATUM m
EX				NTRA	Execut	W.A. Duncan Excavations			= 221	533 0	0 m N 62566	84.00 m
TE	ST P			ER [·]	1300		LOGGED BY	LH0)	555.0	<u>0 III N 02300</u> C	CHECKED BY MT
NC	TES	;										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	tlets	М	S	1.5		Peat Inclusions
											TP104_0.0-0.1	
ш	-		_		CL	CLAY: Medium plasticity, reddish brown, trace r	ootlets	D	F			Trace Peat Material
			0 <u>.5</u> –								TP104_0.3-1.0	
Ш			1.0		CL	CLAY: Medium plasticity, reddish brown, grey w mottling, trace rootlets	ith brown	D	F			
			_ _ 1 <u>.5</u> _ _ _ _ _ 			1P104 terminated at 1m						

	R					ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP105 PAGE 1 OF 1
CL	IEN	Joł	nSta	ff			PROJECT NAME Data Gap Investigation					
PF	ROJE	CT NU	JMBE	R _A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 V	/harf Road, E	rmington, NSW
DA	ATE S	START	ED _				R.L. SURFAC	E			D	ATUM _m
EX	CAV	ATIO		NTRA	CTOR	W.A. Duncan Excavations	SLOPE				B	EARING
EC	QUIPI	MENT	<u>5-</u> T	onne	Excav	ator	COORDINATE	S _E	E 321	536.0	0 m N 62566	60.00 m
TE	ST P	PIT DIA	MET	ER	1300		LOGGED BY	LHC	2		C	HECKED BY MT
NC												
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	ets	М	S	1.2		Trace Rootlets
			-								TP105_0.0-0.1	
ш			0 <u>.5</u> - - 1 <u>.0</u>		CL	CLAY: low plasticity, reddish brown mottled grey and rootlets	. Trace sand	D	F		TP105_0.5-1.1	Trace Rootlets, Trace Sand
			- 1 <u>.5</u> - - 2.0									

100				AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP106 PAGE 1 OF 1
CL	IENT	「 <u>Joł</u>	nSta	ff			PROJECT NA	ME _	Data	Gap	Investigation	
PR	OJE	CT NU	JMBE	R <u>A</u>	10102	3.0436.01	PROJECT LO	CATI	ON _	<u>110 W</u>	/harf Road, E	rmington, NSW
DA	TE S	START	ED _				R.L. SURFAC	E			D	
			5-T	onne	Excav	_W.A. Duncan Excavations		-5	F 321	520.0	0 m N 62566	41 00 m
TE	ST P		MET		1300		LOGGED BY	<u>_LH0</u>	021	020.0	C	
NC	TES								,			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
E E	Ma				CLS	FILL: Silty CLAY, low plasticity, brown, trace root Sandy CLAY:low plasticity, reddish brown clay, n grained, well graded sand, trace rootlets and sma Sandy CLAY:low plasticity, reddish brown, grey r brown, medium grained sand, well graded, trace small gravel TP106 terminated at 1.1m	nedium all gravel	D	Ŭ S St	3.5	TP106_0.0-0.1	Peat Inclusions
-			2.0									

	R					ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP107 PAGE 1 OF 1
CL	IEN	F <u>Joł</u>	nnSta	ff D	40400	0.0400.04	PROJECT NA		Data	Gap	Investigation	
PF	OJE	CINU	JMBF	R _A	10102	3.0436.01	PROJECT LO	CAII	ON _	<u>110 V</u>	/harf Road, E	rmington, NSW
		STAR1			стор	W A Duncan Excavations		E			D	
E		MENT	5-T	onne	Excav	ator		ES	E 321	507.0	□ 0 m N 62566	58.00 m
TE	ST F	PIT DIA	MET	ER _	1300		LOGGED BY	LH	С		C	HECKED BY MT
NC	DTES	;			1				1	1		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	tlets	М	S	2.7		Peat Inclusions
											TP107_0.0-0.1	
E	-		- 0 <u>.5</u> - 1 <u>.0</u> -		CL	CLAY: Medium plasticity, reddish brown, trace r CLAY: Medium plasticity, reddish brown, grey w mottling, trace rootlets TP107 terminated at 0.9m	ith brown	D	St		TP107_0.3-0.9	
			- 1 <u>.5</u> - - 2.0									

	E C			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP108 PAGE 1 OF 1
CL	IENT	Jol	hnSta	iff	10100	2.0426.04	PROJECT NA		Data	Gap	Investigation	minston NCM
				κ <u>Α</u>	10102	3.0430.01			UN _	110 0		
					TOR	W A Duncan Excavations	_ R.L. SURFAC	E			U B	AIUM _m
EC		MENT	5-T	onne	Excav	ator		ES I	E 321	504.0	0 m N 62566	84.00 m
TE	ST P		AMET	'ER	300		LOGGED BY	LH	С		C	HECKED BY MT
NC	DTES					1			1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace roc	tlets	M	S	2.6		Peat Inclusions
Ш			_ 0 <u>.5</u>		CL	CLAY: Medium plasticity, reddish brown, trace	rootlets	D	St		TP108_0.0-0.1	
Ш	_		- - <u>1.0</u>		CL	CLAY: Medium plasticity, reddish brown, grey v mottling, trace rootlets TP108 terminated at 1m	vith brown	D	St		TP108_0.5-1.0	
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GDT_23/1/25			- - 1 <u>.5</u> - - - 2.0									

8	R			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP109 PAGE 1 OF 1
CL	IENT	<u>اەل</u>	hnSta	lff			PROJECT NA	ME	Data	Gap I	Investigation	
PR	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0436.01	PROJECT LO	CATI	ON _	110 W	/harf Road, E	rmington, NSW
DA	TE S	STAR	FED _			COMPLETED	R.L. SURFAC	E			D	ATUM _m
EX	CAV	ATIO	N CO	NTRAC	CTOR	W.A. Duncan Excavations	SLOPE				B	EARING
EC	UIP	MENT	5-1	onne	Excava	ator	COORDINATE	ES _	E 321	495.0	0 m N 62566	95.00 m
TE	ST P	IT DI	AMET	ER _1	300		LOGGED BY	LHO	о		c	HECKED BY MT
NC	DTES	i		, ,		Γ		1	1			1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
E E M					CL	FILL: Silty CLAY, low plasticity, brown, trace roc CLAY: Medium plasticity, reddish brown,trace r TP109 terminated at 1m	potlets	D D	S	1.2	TP109_0.0-0.1	Peat Inclusions
ADE_BOREHOLE 23.0436_IP.GPJ GINT STD AUSTRALIA.GD			- 1 <u>.5</u> - - - 2 0	-								

5	K			AI IONS GR	DI JULTI OU	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP110 PAGE 1 OF 1
CL	IENT	[Jol	hnSta	lff			PROJECT NA	ME	Data	Gap	Investigation	
PR	OJE	CT NI	JMBE	R _ A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 V	/harf Road, E	rmington, NSW
DA	TE S	STAR	FED _				R.L. SURFAC	E			C	ATUM _m
EX	CAV	ATIO	N CO	NTRA	CTOR	W.A. Duncan Excavations	SLOPE				B	EARING
EQ	UIP	MENT	5-1	onne	Excav	ator		ES _	E 321	485.0	0 m N 62567	37.00 m
TE	ST P	IT DI	AMET	'ER	1300		LOGGED BY	LH	0		c	HECKED BY MT
NC	DTES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
HOLE 23.0436_TP.GPJ GINT STD AUSTRALIA.GDT 23/1/25					CLS	FILL: Silty CLAY, low plasticity, brown, trace roo Sandy CLAY: Sandy CLAY, low plasticity, grey, sand, well graded, trace rootlets and gravel	nedium grain	M D	S	2	TP110_0.0-0.1	Peat Inclusions
ADE_BOREH			2.0	_								

5	R				DI JULTI	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP111 PAGE 1 OF 1
CL	IENT	Joł	nnSta	ff			PROJECT NA	ME	Data	a Gap	Investigation	
PR	OJE	CT NI	JMBE	R _ A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 V	Vharf Road, E	rmington, NSW
DA	TE S	START	ED _			COMPLETED	R.L. SURFAC	E			D	ATUM _m
EX				NTRA	CTOR	W.A. Duncan Excavations	SLOPE		- 004	470.0	B	EARING
	NUIPI ST P		<u>5-1</u>	onne FR	Excav	ator		-5 <u>і</u> іна	<u>= 321</u> ר	472.0	<u>0 m N 62567</u>	
NC	DTES				1000						V	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	lets	M	S	3.3		Peat Inclusions
			-								TP111_0.0-0.1	
Ш			- 0 <u>.5</u> -		CL	Sandy CLAY:low plasticity, reddish brown, mediu sand, well graded, trace rootlets and small grave	ım grained I	D	St		TP111_0.4-1.0	
ш	-		_		CL	CLAY: Medium plasticity, reddish brown, trace ro		D	St	-		
			1. <u>5</u> 1 <u>.5</u> 2.0			TP111 terminated at 1m						

10	R			A I I I I I I I I I I I I I I I I I I I		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP112 PAGE 1 OF 1
CL		Joh	nnSta	ff A	40400	2.0420.04	PROJECT NA		Data	Gap	Investigation	
				R <u>A</u>	10102				<u>UN</u> _	110 0		
	CAV			NTRA	CTOR	W.A. Duncan Excavations	SLOPE	E			U B	EARING
EQ	UIPI	MENT	5-T	onne	Excav	ator	COORDINATE	ES _I	E 321	476.0	0 m N 62567	07.00 m
TE	ST P	IT DIA	MET	ER	1300		LOGGED BY	LH	o C		c	HECKED BYMT
NC	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	tlets	М	S	3.9		Peat Inclusions
			-								TP112_0.0-0.1	
Ш			- 0 <u>.5</u> -		CL	CLAY: low plasticity, reddish brown, with grey m sand and rootlets	ottling. Trace	D	St		TP112_0.4-0.9	
			1. <u>0</u> - 1. <u>5</u> - 2.0			TP112 terminated at 0.9m						

1	R	-				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP113 PAGE 1 OF 1
CL	IENT	「_Joł	nnSta	ff			PROJECT NA	ME	Data	Gap	Investigation	
PR	OJE	CT NU	JMBE	R _ A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 V	/harf Road, E	rmington, NSW
DA	TE S	START	ED _				R.L. SURFACE	E			D	ATUM _m
EX	CAV	ATIO		NTRA	CTOR	W.A. Duncan Excavations	SLOPE				B	EARING
EC	UIPI	MENT	<u>5-</u> T	onne	Excav	ator	COORDINATE	s _I	E 321	482.0	0 m N 62566	89.00 m
TE	ST F	PIT DIA	MET	ER _	1300		LOGGED BY	LHO	2		C	
NC	TES			1	1					1		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	lets	М	D	4.4		Peat Inclusions
ш			- - 0 <u>.5</u> -		CL	CLAY: low plasticity, reddish brown, with grey m sand and rootlets	ottling. Trace	D	St		TP113_0.0-0.1	
			10									
			- - 1. <u>5</u> - - 2.0			TP113 terminated at 1m						

	i c			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP114 PAGE 1 OF 1
CL	.IENT	「 <u>Joł</u>	hnSta	ff .			PROJECT NA	ME	Data	Gap	Investigation	
PF	ROJE	CT NU	JMBE	R <u>A</u>	10102	3.0436.01	PROJECT LO	CATI	ON _	<u>110 W</u>	/harf Road, E	rmington, NSW
DA	ATE S	START	FED _				R.L. SURFAC	E				DATUM m
E				NTRAG	CTOR	W.A. Duncan Excavations	SLOPE				E	BEARING
EC			<u>5-1</u>	onne	Excava	ator		ES _	<u>E 321</u> 2	490.0	0 m N 62566	69.00 m
					300		LOGGED BY		5		U	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace roo	tlets, trace	м	S	4.1		Peat Inclusions
			- - 0 <u>.5</u>								TP114_0.0-0.1	
					CLS	Sandy CLAY:low plasticity, reddish brown, medi sand, well graded, trace rootlets, sandstone incl	um grained usions	D	St		TP114_0.5-1.0	
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GD1_23/1/25			- - 1 <u>.5</u> - - - 2.0									

8	S					ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP115 PAGE 1 OF 1
CL	IENT	Jol	hnSta	lff			PROJECT NA	ME	Data	Gap	Investigation	
PR	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0436.01	PROJECT LO	CATI	ON _	110 W	/harf Road, E	rmington, NSW
DA	TE S	STAR	red _			COMPLETED	_ R.L. SURFAC	E			C	DATUM m
EX	CAV	ATIO	N CO	NTRA	CTOR	W.A. Duncan Excavations	_ SLOPE				B	BEARING
EC	UIPN	MENT	<u>5-</u> T	onne	Excav	ator		ES _	<u>= 321</u>	477.0	0 m N 62566	640.00 m
TE	ST P	IT DI	AMET	'ER	1300		LOGGED BY	LHO	2		C	CHECKED BY MT
NC	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace roo	otlets, trace	М	S	4		Peat Inclusions
			-								TP115_0.0-0.1	
DE_BOREHOLE 23.0436_TP.GPJ GINT STD AUSTRALIA.GDT 23/1/25					CLS	Sandy CLAY:low plasticity, reddish brown, med sand, well graded, trace rootlets, sandstone inc TP115 terminated at 0.9m	ium grained lusions	D	St		TP115_0.3-1.0	

2	K			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP116 PAGE 1 OF 1
CL	IENT	r Joł	nnSta	ff			PROJECT NA	ME	Data	i Gap	Investigation	
PR	OJE	CT NU	JMBE	R _ A	10102	3.0436.01	PROJECT LO	CATI	ON _	110 W	/harf Road, E	rmington, NSW
DA	TE S	START	FED _				R.L. SURFAC	E			C	ATUM _m
EX	CAV	ATIO		NTRAG	CTOR	W.A. Duncan Excavations	SLOPE				B	EARING
EQ	UIP	MENT	<u>5-</u> T	onne	Excava	ator	COORDINATE	ES _	E 321	469.0	0 m N 62566	66.00 m
TE	ST P	PIT DIA	AMET	ER _1	1300		LOGGED BY	LHO	2		c	HECKED BY MT
NC	DTES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace roo	tlets	M	S	3.7		Peat Inclusions
			-								TP116_0.0-0.1	
Ш			0 <u>.5</u> - - -		CLS	Sandy CLAY:low plasticity, reddish brown, medi sand, well graded, trace rootlets and small grave	um grained	D	St		TP116_0.4-1.0	
אתב הטרגרוטרב גטיאיט בוריטרט טואו טוט איט איניגע			- - 1 <u>.5</u> - - - 2.0									

100	R			AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922				BO	REHOL	E NUMBER TP117 PAGE 1 OF 1
CL	IENT	۲ Joł	nnSta	ff			PROJECT NA	ME _	Data	Gap	Investigation	
PR	OJE	CT NU	JMBE	R _A	10102	3.0436.01	PROJECT LO	CATI	ON _	<u>110 V</u>	/harf Road, E	rmington, NSW
DA	TE S	START	ED_				R.L. SURFACE	E			D	ATUM _m
EX				NTRA		W.A. Duncan Excavations			= 201	151 0		EARING
	ST F			ER [·]	1300	aloi		LH(<u>- 521</u> D	434.0	<u>0 III N 02300</u> C	
NC	DTES								-			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш						FILL: Silty CLAY, low plasticity, brown, trace root	lets	М	S	2.9		Peat Inclusions
			-								TP117_0.0-0.1	
Ш			0 <u>.5</u> 		CLS	Sandy CLAY:low plasticity, reddish brown, media sand, well graded, trace rootlets and small grave	um grained	D	St		TP117_0.4-0.9	
			1 <u>.0</u> - 1 <u>.5</u> - - - 2 <u>.0</u>			TP117 terminated at 0.9m						

Appendix F – Equipment Calibration Certificates

Calibration and Service Report – PID

Company: Contact:	Active Environmental Solutions	Manufacturer: Instrument:	RAE MINIRAE 3000 SN: 592-905200	Serial #: Asset #:	592-905200
Address:	2 Merchant Avenue	Model:	MINIRAE 3000	Part #:	059-B116-300
	Thomastown	Configuration:	VOC 10.6EV	Sold:	09.03.2011
	VIC	Wireless:	BLE	Last Cal:	05.11.2024
Phone:		Network ID:	-	Job #:	168502
Fax:		Unit ID:	-	Cal Spec:	
Email:	jason.cheng@aesolutions.com.a	Details:		Order #:	0000002114

Battery NiCd, NiMH, Dry cell, Lilon P Charger Power Supply - Cradle, Travel Charger - Pump Flow X Cleaned pump, >450ml/min	Item	Test	Pass/Fail	Comments	Serial Number
Charger Power Supply - Cradle, Travel Charger - Pump Flow x Cleaned pump, >450ml/min	Battery	NiCd, NiMH, Dry cell, Lilon	Р		
Cradle, Travel Charger - Pump Flow x Cleaned pump, >450ml/min	Charger	Power Supply	-		
Pump Flow x Cleaned pump, >450ml/min		Cradle, Travel Charger	-		
	Pump	Flow	х	Cleaned pump, >450ml/min	
Filter Filter, fitting, etc X Dirty, replaced (w/ inlet probe)	Filter	Filter, fitting, etc	х	Dirty, replaced (w/ inlet probe)	
Alarms Audible, visual, vibration P	Alarms	Audible, visual, vibration	Р		
Display Operation P	Display	Operation	Р		
Switches Operation P	Switches	Operation	Р		
PCB Operation X Faulty, replaced	РСВ	Operation	х	Faulty, replaced	
Connectors Condition P	Connectors	Condition	Р		
Firmware Version P V2.22A	Firmware	Version	Р	V2.22A	
Datalogger Operation P	Datalogger	Operation	Р		
Monitor Housing Condition P Cleaned	Monitor Housing	Condition	Р	Cleaned	
Case Condition / Type -	Case	Condition / Type	-		
Sensors	Sensors				
PID Lamp P Cleaned	PID	Lamp	Р	Cleaned	
PID Sensor P Cleaned	PID	Sensor	Р	Cleaned	
THP Sensor P	THP	Sensor	Р		

Engineer's Report

Replaced faulty PCB assembly Cleaned pump, cleaned porous metal filter, checked flowrate and reset stall values Cleaned lamp, lamp housing and sensor detector; checked moisture sensitivity Checked unit settings, PC configuration and BLE communication Unit serviced and calibrated.

Calibration and Service Report – PID

Company: Contact:	Active Environmental Solutions (Jason Cheng	Manufacturer: Instrument:	RAE MINIRAE 3000 SN: 592-905200	Serial #: Asset #:	592-905200
Address:	2 Merchant Avenue	Model:	MINIRAE 3000	Part #:	059-B116-300
	Thomastown	Configuration:	VOC 10.6EV	Sold:	09.03.2011
	VIC	Wireless:	BLE	Last Cal:	05.11.2024
Phone:		Network ID:	-	Job #:	168502
Fax:		Unit ID:	-	Cal Spec:	
Email:	jason.cheng@aesolutions.com.a	Details:		Order #:	0000002114

Calibration Certificate

Sensor	Туре	Serial No.	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot #		Zero	Span
Oxygen								
					-			
LEL								
PID	023-0301-000. PID SENS OR MODULE (PGM 7600	S023030081MC / 1062R1 41196	Isobutylene	100ppm	WO443753-1		0	100.0
Battery	059-3051-000. MINIRAE 3000 LI-ION BATTERY	159BCW0723						
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5		GHTT9W0358						
Toxic 6								

Calibrated/Repaired by: JERRY JI

Date: 05.11.2024

Next Due: 05.05.2025

Appendix G – Results Summary Table

Table A - Analytical Results_ASC NEPM, 2013

			1		1								1																				
			Ast	bestos				Me	tals						I	norganio	s										P/	н				1	
			Bonded ACM	FA and AF (friable asbestos)	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Moisture Content	Exchangeable Calcium	pH 1:5 soil:water	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Cation Exchange Capacity	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Anthracene	Phenanthrene	Pyrene	Fluoranthene	Chrysene	Benzo(a)anthracene	Benzo(a) pyrene	Benzo(b+j+k)fluoranthene	Benzo(g, h, i)perylene	Dibenz(a,h)anthracene
			g/kg	g/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	heq/100	-	heq/100	heq/100	heq/100	neq/100	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					4	0.1	1	1	1	0.1	1	1	0.1	0.1		0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.2	0.1	0.1
NEPM 2013 Table	e 1B(7) Managemer	nt Limits in Res / Parkland, Fine Soil				İ		İ	İ	İ		İ	1	Ì		İ	İ	i i					İ		İ	İ			İ				
NEPM 2013 Table	e 1A(3) Res A/B Soil	HSL for Vapour Intrusion. Clay																		5													
WA DOH 2009 Ta	able 3 Asbestos in Se	oil Screening Levels	0.01 % w/w	0.001% w/w																													
NEPM 2013 Table	e 1B(5) EIL - Urban	Res & Public Open Space			100		410	85	1.100		20	180								170													
NEPM 2013 Table	e 1B(6) ESLs for Urb	an Res. Fine Soil							_,																					1.4			
NEPM 2013 Table	e 1A(1) HILs Res A S	oil			100	20	100	6,000	300	40	400	7,400																					
	()							,,				,								11					-								
Field ID	Depth (m BGL)	Date Sample Type																															
TP101_0_0_0_1	0-0 1	14 Jan 2025 Primary	NAD	NAD	<5.0	1 19	14.6	10.7	35.8	<0.10	2.5	<5.0	16.0	-	-		-		-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP101_0.0-0.1	0.4-1.0	14 Jan 2025 Primary	NAD	NAD	61	0.81	94	16.7	27.7	<0.10	2.5	<5.0	13.1	-		<u> </u>	-		-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP102_0.0-0.1	0-0 1	14 Jan 2025 Primary	NAD	NAD	5 1	1 02	15.5	13.1	34.3	<0.10	2.0	5.9	21.5	-	-	<u> </u>	-		-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP102_0.0-0.1	0-0.1	14 Jan 2025 Primary	NAD	NAD	5.6	0.80	1/1 3	9.6	27.6	<0.10	2.2	25.0	21.5							<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP103_0.3-1.1	0 3-1 1	14 Jan 2025 Primary	NAD	NAD	6.1	0.05	69	16.4	27.0	<0.10	<1.0	<5.0	14.7	-	-	<u> </u>	-		-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP103_0.3-1.1	0.01	14 Jan 2025 Primary	NAD	NAD	13.4	0.70	13.3	12.4	23.5	<0.10	22	<5.0	21.8	-			-			<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP104_0.0-0.1	0.0.1	14 Jan 2025 Primary	NAD	NAD	15.4	0.77	10.0	13.0	27.4	<0.10	2.2	<5.0	10.7	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP105_0.0-0.1	0.5.1.1	14 Jan 2025 Primary	NAD	NAD	75	0.37	10.0	10.0	15.0	<0.10	<1.0	<5.0	14.0	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP105_0.5-1.1	0.3-1.1	14 Jan 2025 Primary	NAD	NAD	/.5	0.47	4.0	10.9	15.9	<0.10	<1.0	<5.0	14.9	-	-	- 15	- 0.1	-0.1	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
TP106-0.3-1.1	0.5-1.1	14 Jan 2025 Primary	-	-	-	-	10.6	-		<0.10	-	<e 0<="" th=""><th>16.7</th><th>0.9</th><th>5.1</th><th>1.5</th><th>0.1</th><th><0.1</th><th>2.0</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.30</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th></e>	16.7	0.9	5.1	1.5	0.1	<0.1	2.0	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.30	<0.20	<0.20	<0.20	<0.20	<0.20
TP100_0.0-0.1	0.0.1	14 Jan 2025 Primary	NAD	NAD	<5.0 E 0	0.40	10.0	0.4	22.9	<0.10	2.5	<5.U	20.0	-	-		-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP107_0.0-0.1	0.2.0.0	14 Jan 2025 Primary	NAD	NAD	5.9	0.05	15.9	9.4	15.5	<0.10	1.0	<5.U	12.9	-	-		-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP107_0.3-0.9	0.5-0.9	14 Jan 2025 Primary	NAD	NAD	<5.0	0.40	0.4	5.5	15.0	<0.10	<1.0	<5.0	12.1	-	-	-	-	-0.1	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
TP108-0.5-1.0	0.5-1.0	14 Jan 2025 Primary			-	-	-	-	-	-	-	-	-	1.7	5.1	1.8	0.2	<0.1	3.7		-0.20	-0.20	-0.20		-0.20		- 20	-0.20		- 20	-0.20	-0.20	
TP108_0.0-0.1	0-0.1	14 Jan 2025 Primary	NAD	NAD	<5.0	0.72	14.2	7.0	32.7	<0.10	1.0	<5.0	17.1	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	< 0.30
TP109_0.0-0.1	0-0.1	14 Jan 2025 Primary	NAD	NAD	10.8	0.59	13.0	9.0	24.0	<0.10	3.7	<5.0	15.4	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	< 0.30
TP109_0.5-1.0	0.5-1.0	14 Jan 2025 Primary	NAD	NAD	5.0	0.57	8.0	< 5.0	21.5	<0.10	<1.0	<5.0	12.0	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	< 0.30
TP110_0.0-0.1	0-0.1	14 Jan 2025 Primary	NAD	NAD	12.7	0.56	0.4	13.0	25.0	<0.10	3.5	<5.0	14.5	-	-		-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP111_0.0-0.1	0.4.1.0	14 Jan 2025 Primary	NAD	NAD	7.0	0.82	12.1	12.0	12 50.5	<0.10	4.1	0.0 E 1	10.2	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP111_0.4-1.0	0.4-1.0	14 Jan 2025 Primary	NAD	NAD	7.9	0.22	4.7	1.7	15.5	<0.10	<1.0	5.1	10.2	- 12	-	25	-	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
TP112-0.4-0.9	0.4-0.9	14 Jan 2025 Primary	NAD	NAD	-	-	- 171	-	25.2	<0.10	5.4	75	15.0	1.5	4.0	2.5	0.2	0.5	4.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
TP112_0.0-0.1	0.0.1	14 Jan 2025 Primary	NAD	NAD	0.0	1 16	10.0	9.5	23.3	<0.10	3.4	7.5	12.9	-	-	-	-		-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP113_0.0-0.1	0-0.1	14 Jan 2025 Primary	NAD	NAD	11.5	1.10	10.9	9.0	24.1	<0.10	3.9	3.2	16.9	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP115_0.5-0.9	0.5-0.9	14 Jan 2025 Primary	NAD	NAD	<5.0	1.51	12.7	17.4 C 4	21.7	<0.10	3.0	20.9	17.4	-	-		-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP114_0.0-0.1	0.0.1	14 Jan 2025 Primary	NAD	NAD	<5.0	0.40	12.0	7.4	21.7	<0.10	2.7	0.2	12.0	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP115_0.0-0.1	0.2.1.0	14 Jan 2025 Primary	NAD	NAD	<5.0	0.38	15.0	5.7	10.2	<0.10	2.3	<5.0	14.2	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP115_0.5-1.0	0.01	14 Jan 2025 Primary	NAD	NAD	<5.0	0.70	13.1		16.2	<0.10	2.0	<5.0	15.5	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
TP117 0001	0-0.1	14 Jan 2025 Primary	NAD	NAD	5.0	0.71	1/ 5	<	27.0	<0.10	2.0	<	12.0	-	-	<u> </u>	-		-	<0.30	<0.30	<0.50	<0.50	<0.30	<0.30	<0.30	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.30
TD117_0400	0.1_0.0	14 Jan 2025 Primany	NAD	NAD	10.0	0.01	12 1	6.0	10.6	<0.10	1.6	6.2	1/ 6	-		<u> </u>	-			<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
DD01 250114	10.4-0.5		NAD	NAD	10.9	0.70	14.0	0.9	19.0	VU.10	1.0	0.5	17.5	-	-		-		-	<0.30	<0.20	<0.20	<0.30	<0.30	<0.00	<0.20	<0.30	<0.20	<0.30	<0.30	<0.20	<0.30	<0.30
DRU1_250114		14 Jan 2025 Field Duplicate		<u> </u>	11.2	0.24	11.6	7.2	24.5	<0.10	2.5	5.2	15.2	-	-		-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
DKU2_250114		14 Jan 2025 Field Duplicate			5./	1.42	24.5	7.2	31.4	<0.10	4.0	14./	15.2	-	-	-	-	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
SKU1_250114	-	14 Jan 2025 Field Triplicate			9	<0.4	1/		2/	0.1	3	8	13	-	-		-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.2	<0.1	<0.1
SKU2_250114	-	14 Jan 2025 Field Triplicate	- 1	I -	12	< 0.4	26	11	26	U.1	/	16	∥ 16	- 1	-	- 1	- 1	1 - 1	-	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.05	<0.2	<0.1	<0.1

Statistics																															
Number of Results	26	26	30	30	30	30	30	30	30	30	30	3	3	3	3	3	3	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Number of Detects	0	0	19	28	30	28	30	2	24	13	30	3	3	3	3	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	-	-	5	0.22	4.6	<5	13.5	0.1	<1	<5	10.2	0.9	4.8	1.5	0.1	<0.1	2.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
Maximum Concentration	-	-	13.4	1.42	26	17.4	35.8	0.1	7	20.9	21.8	1.7	5.1	2.5	0.2	0.3	4.4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3

*NAD - No asbestos detected above the laboratory reporting limit

Environmental Standards

Table A - Analytical Results_ASC NEPM, 2013

				P	АН					вт	ΈX						ТРН						PC	Bs							TRH		
	all Indeno(1,2,3-c,d)pyrene پا	ع Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	명 Benzo(a)pyrene TEQ calc (2ero)	BAHs (Sum of total)	A PAHs (Sum of positives)	e ue Be mg/kg	aeuono Toluene mg/kg	Ethylbenzene	Xylene (m & p)	xylene (o)	Xylene Total	Maphthalene (VOC)	a Martin BTEX	3 (C6-C9 Fraction ba	a Z10-C14 Fraction	autor Cl5-C28 Fraction	a 29-C36 Fraction ba	3 전 C10-C36 Fraction (Sum)	3 Arochlor 1016	a Arochlor 1221	글 전 Arochlor 1232	a Arochlor 1242 a	a Arochlor 1248	m Arochlor 1254 Ba	mg/gg kg	공 전 PCBs (Sum of total)	a C6-C10 Fraction (F1)	g c6-c10 (F1 minus BTEX)	a >C10-C16 Fraction (F2)	a >C10-C16 Fraction (F2 minus කී Naphthalene)	% >C16-C34 Fraction (F3)	2 234-C40 Fraction (F4)
EQL	0.1	0.3	0.3	0.3	0.3	0.05	0.2	0.5	1	2	1	1	1	2	25	50	100	100	50	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	25	25	50	50	100	100
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil	1						1																					800		1,000		3,500	10,000
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay							0.7 1 2 3	480				110 310	5																50 90 150 290	2	280		
WA DOH 2009 Table 3 Asbestos in Soil Screening Levels																																	
NEPM 2013 Table 1B(5) EIL - Urban Res & Public Open Space													170																				
NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil							65	105	125			45																	180	120	120	1,300	5,600
NEPM 2013 Table 1A(1) HILs Res A Soil		3	3	3	300																						1						

Field ID	Depth (m BGL)	Date	Sample Type																				_													
TP101_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	í - '	<100	<100
TP101_0.4-1.0	0.4-1.0	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	· - '	<100	<100
TP102_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	· - '	<100	<100
TP103_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	· - '	<100	<100
TP103_0.3-1.1	0.3-1.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<35	<35	<50	· - '	<100	<100
TP104_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	· - '	<100	<100
TP105_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP105_0.5-1.1	0.5-1.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	i - '	<100	<100
TP106-0.3-1.1	0.3-1.1	14 Jan 2025	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-]	-
TP106_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP107_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP107_0.3-0.9	0.3-0.9	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP108-0.5-1.0	0.5-1.0	14 Jan 2025	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-]	-
TP108_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP109_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	<0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP109_0.5-1.0	0.5-1.0	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP110_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP111_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	- '	<100	<100
TP111_0.4-1.0	0.4-1.0	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP112-0.4-0.9	0.4-0.9	14 Jan 2025	Primary	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	[-]	-
TP112_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP113_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP113_0.5-0.9	0.5-0.9	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP114_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP115_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP115_0.3-1.0	0.3-1.0	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP116_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP117_0.0-0.1	0-0.1	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
TP117_0.4-0.9	0.4-0.9	14 Jan 2025	Primary	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<35	<35	<50	<u> </u>	<100	<100
BR01_250114	-	14 Jan 2025	Field Duplicate	< 0.30	0.35	0.70	< 0.30	<0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50	· - '	<100	<100
BR02_250114	-	14 Jan 2025	Field Duplicate	< 0.30	0.35	0.70	< 0.30	< 0.30	-	< 0.50	< 0.50	<1.0	<2.0	<1.0	<2.0	-	<2.00	<25	<50	<100	<100	<100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<35	<35	<50		<100	<100
SR01_250114	-	14 Jan 2025	Field Triplicate	<0.1	< 0.5	< 0.5	< 0.5	-	< 0.05	<0.2	< 0.5	<1	<2	<1	<1	<1	-	<25	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<25	<50	<50	<100	<100
SR02_250114	-	14 Jan 2025	Field Triplicate	<0.1	< 0.5	< 0.5	< 0.5	-	< 0.05	< 0.2	< 0.5	<1	<2	<1	<1	<1	-	<25	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<25	<25	<50	<50	<100	<100

Statistics																																	
Number of Results	30	30	30	30	28	2	30	30	30	30	30	30	2	28	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	2	30	30
Number of Detects	0	28	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	0.35	<0.5	<0.3	<0.3	<0.05	<0.2	<0.5	<1	<2	<1	<1	<1	<2	<25	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<25	<50	<50	<100	<100
Maximum Concentration	<0.3	<0.5	0.7	<0.5	<0.3	<0.05	<0.5	<0.5	<1	<2	<1	<2	<1	<2	<25	<50	<100	<100	<100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<35	<35	<50	<50	<100	<100

*NAD - No asbestos detected above the laboratory reporting limit

Environmental Standards

Table A - Analytical Results_ASC NEPM, 2013

					Or	ganonho	osnhorou	ıs Pestici	ides						Organo	nhosnh	orous Pr	esticides															Organo	ochlorir	ne Pesti	rides
									ucs																								Organi			
				, >C10-C40 Fraction (Sum)	, Azinophos methyl	, Bromophos-ethyl	, Chlorpyrifos	, Chlorpyrifos-methyl	, Coumaphos	, Diazinon	, Dichlorvos	, Dimethoate	, Disulfoton	, Ethion	, Ethoprop	, Fenitrothion	, Fenthion	, Malathion	, Methidathion	, Methyl parathion	, Mevinphos (Phosdrin)	, Phorate	Ronnel	, 4,4-DDE	a-BHC	, Aldrin	, Aldrin + Dieldrin	b-BHC	, Chlordane (cis)	, Chlordane (trans)	d-BHC	000	DDT	, DDT+DDE+DDD	, Dieldrin	, Endosulfan I
				mg/kg	g mg/kg	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	mg/kg
EQL				50	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100	100	100	0.1
NEPM 2013 Tabl	e 1B(7) Managemen	t Limits in Res / Parkl	land, Fine Soil																																	
NEPM 2013 Tabl	e 1A(3) Res A/B Soil	HSL for Vapour Intru	sion, Clay																																	
WA DOH 2009 Ta	able 3 Asbestos in So	oil Screening Levels																																		
NEPM 2013 Tabl	e 1B(5) EIL - Urban I	Res & Public Open Sp	ace																														180			
NEPM 2013 Tabl	e 1B(6) ESLs for Urba	an Res, Fine Soil																																		
NEPM 2013 Tabl	e 1A(1) HILs Res A So	pil					160																				6						2	40,000		
Field ID	Depth (m BGL)	Date	Sample Type																																	
TP101_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP101_0.4-1.0	0.4-1.0	14 Jan 2025	Primary	<100	<u> </u>	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP102_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP103_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	-	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	<0.10	-	-	-	-	< 0.10	-	-	< 0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP103_0.3-1.1	0.3-1.1	14 Jan 2025	Primary	<100	-	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	< 0.10	< 0.10	<0.10	<0.10	-	<0.10	< 0.10	< 0.10	<0.10	<0.10	<100	-	<100	< 0.20
TP104_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP105_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-		-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP105_0.5-1.1	0.5-1.1	14 Jan 2025	Primary	<100	<u> </u>	-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP106-0.3-1.1	0.3-1.1	14 Jan 2025	Primary	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP106_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP107_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP107_0.3-0.9	0.3-0.9	14 Jan 2025	Primary	<100		-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP108-0.5-1.0	0.5-1.0	14 Jan 2025	Primary		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-1.00	-	-	-
TP108_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100		-	<0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP109_0.0-0.1	0.5.1.0	14 Jan 2025	Drimony	<100	<u>↓ -</u>		<0.10	<0.10	-	<0.10	-		-	-	<0.10			-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP109_0.3-1.0	0.5-1.0	14 Jan 2025	Primary	<100			<0.10	<0.10	-	<0.10	-		-	-	<0.10			-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP111_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100			<0.10	<0.10		<0.10					<0.10					<0.10			<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<100	_	<100	<0.20
TP111_0.0-0.1	0.4-1.0	14 Jan 2025	Primary	<100	<u> </u>	+ -	<0.10	<0.10	-	<0.10	-	<u> </u>	-	- I	<0.10	<u> </u>	<u> </u>	-	-	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP112-0.4-0.9	0.4-0.9	14 Jan 2025	Primary	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.20
TP112 0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	<u> </u>	-	< 0.10	<0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	<0.10	-	-	< 0.10	<0.10	< 0.10	<0.10	-	<0.10	< 0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP113 0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	1 -	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<100	-	<100	< 0.20
TP113 0.5-0.9	0.5-0.9	14 Jan 2025	Primary	<100	1 -	-	< 0.10	< 0.10	-	< 0.10	-	- 1	-	-	< 0.10	- 1	-	-	-	< 0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<100	-	<100	< 0.20
TP114 0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	- 1	-	< 0.10	< 0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<100	-	<100	< 0.20
TP115 0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	- 1	-	< 0.10	< 0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<100	-	<100	< 0.20
	0.3-1.0	14 Jan 2025	Primary	<100	- 1	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	< 0.10	<0.10	< 0.10	< 0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP116 0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	- 1	-	< 0.10	< 0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<100	-	<100	<0.20
TP117_0.0-0.1	0-0.1	14 Jan 2025	Primary	<100	- 1	-	< 0.10	<0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	<0.10	-	-	< 0.10	<0.10	< 0.10	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	<100	-	<100	<0.20
TP117_0.4-0.9	0.4-0.9	14 Jan 2025	Primary	<100	-	-	< 0.10	< 0.10	-	< 0.10	-	-	-	-	< 0.10	-	-	-	-	< 0.10	-	-	<0.10	<0.10	< 0.10	< 0.10	-	<0.10	<0.10	<0.10	< 0.10	<0.10	<100	-	<100	<0.20
BR01 250114	-	14 Jan 2025	Field Duplicate	<100	- 1	-	< 0.10	< 0.10	-	< 0.10	-	-	-	-	< 0.10	- 1	- 1	-	-	< 0.10	-	-	<0.10	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<100	-	<100	<0.20
BR02 250114	-	14 Jan 2025	Field Duplicate	<100	- 1	-	< 0.10	< 0.10	-	<0.10	-	-	-	-	<0.10	-	-	-	-	< 0.10	-	-	< 0.10	< 0.10	< 0.10	< 0.10	-	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<100	-	<100	<0.20
SR01 250114	-	14 Jan 2025	Field Triplicate	<50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<100	<100	<100	<0.1
SR02 250114	-	14 Jan 2025	Field Triplicate	<50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<100	<100	<100	<0.1
	1	_			11																									I				-		
Statistics																																				

Number of Results	30	2	2	30	30	2	30	2	2	2	2	28	2	2	2	2	30	2	2	30	30	30	30	2	30	30	30	30	30	30	2	30	30
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<100	<100	<100	<0.1
Maximum Concentration	<100	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<100	<100	<100	<0.2

*NAD - No asbestos detected above the laboratory reporting limit

Environmental Standards

													1					
													Particle Size		Pesti	cides		Halogenated Benzenes
					lphate		de		e)		oxide		Zum					nzene
				Endosulfan II	Endosulfan su	Endrin	Endrin aldehy	Endrin ketone	g-BHC (Lindar	Heptachlor	Heptachlor ep	Methoxychlo	Clay in soils <	DEF	Fenamiphos	Mirex	Parathion	Hexachlorobe
				mg/kg	mg/kg	ug/kg	mg/kg	mg/kg	ug/kg	mg/kg	mg/kg	mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL				0.1	0.1	100	0.1	0.1	100	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table	e 1B(7) Managemer	nt Limits in Res / Parkla	nd, Fine Soil															
NEPM 2013 Table	e 1A(3) Res A/B Soil	HSL for Vapour Intrusi	on, Clay															
WA DOH 2009 Ta	ble 3 Asbestos in S	oil Screening Levels																
NEPM 2013 Table	e 1B(5) EIL - Urban	Res & Public Open Spa	ce															
NEPM 2013 Table	e 1B(6) ESLs for Urb	an Res, Fine Soil																
NEPM 2013 Table	e 1A(1) HILs Res A S	oil				10,000				6		300				10		10
Field ID	Depth (m BGL)	Date	Sample Type															
TP101_0_0_0_1	0-0 1	14 Jan 2025	Brimary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	_	_		<0.10
TP101_0.0-0.1	0.4-1.0	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10		-		<0.10
TP102_0.4-1.0	0.4-1.0	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10				<0.10
TP102_0.0-0.1	0.0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-		<0.10
TP103_0.0-0.1	0 3 1 1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10				<0.10
TP103_0.3-1.1	0.01	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-		<0.10
TP104_0.0-0.1	0.0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-		<0.10
TP105_0.0-0.1	0-0.1	14 Jan 2025	Drimory	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-		<0.10
TP105_0.5-1.1	0.5-1.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-	-	<0.10
TP106-0.3-1.1	0.3-1.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	54	<0.10	-	-	-	-0.10
TP106_0.0-0.1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-	-	<0.10
TP107_0.0-0.1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-	-	<0.10
TP107_0.3-0.9	0.3-0.9	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-	-	<0.10
TP108-0.5-1.0	0.5-1.0	14 Jan 2025	Primary				-	-	-	-	-		61	-0.10	-	-	-	-0.10
TP108_0.0-0.1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-	-	<0.10
TP109_0.0-0.1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-	-	<0.10
TP110 0 0 0 1	0.01	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-	-	<0.10
TP110_0.0-0.1	0.0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	-	-		<0.10
TP111_0.0-0.1	0.1.1 0	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-	-	<0.10
TP111_0.4-1.0	0.4-1.0	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-		<0.10
TP112-0.4-0.5	0.4-0.5	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10				<0.10
TP112_0.0-0.1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10				<0.10
TP113_0.0-0.1	0.5-0.9	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10				<0.10
TP114 0 0-0 1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	<u> </u>			<0.10
TP115 0 0-0 1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10		-		<0.10
TP115_0.0-0.1	0.3-1.0	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-		<0.10
TP116_0.0-0.1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-	-		<0.10
TP117 0 0-0 1	0-0.1	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	-			<0.10
TP117 0 4-0 9	0.4-0.9	14 Jan 2025	Primary	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	-	<0.10	<u> </u>			<0.10
BR01 250114		14 Jan 2025	Field Duplicate	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10	1	<0.10				<0.10
BR01_230114	+ -	14 Jan 2025	Field Duplicate	<0.20	<0.10	<200	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10		-	-	<0.10
SR01 250114	+	14 Jan 2025	Field Triplicate	<0.20	<0.10	<100	<0.10	<0.10	<100	<0.10	<0.10	<0.10		<0.10	<0.1	<0.1	<0.1	<0.10
SR01_250114	+ -	1/ Jan 2025	Field Triplicate	<0.1	<0.1	<100	<0.1		<100	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1
121105 520114	-	1-4 1011 2023	priciu implicate	~U.1	~0.1	~100	~U.1	-	~T00	~U.1	~U.1	~U.1	II -	- I	~U.1	~U.1	~U.I	~U.I

•••			
Sta	t 14	-+1	cc
JLa	LI.	נטכ	L .3

Number of Results	30	30	30	30	28	30	30	30	30	3	28	2	2	2	30
Number of Detects	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<100	<0.1	<0.1	<100	<0.1	<0.1	<0.1	44	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.2	<0.1	<200	<0.1	<0.1	<100	<0.1	<0.1	<0.1	61	<0.1	<0.1	<0.1	<0.1	<0.1

*NAD - No asbestos detected above the laboratory reporting limit

Environmental Standards

Appendix H - Analytical Reports and Chain of Custody

ESA-F-02 Chain of Custody (Internal)

\$ 032+101

Date Printed: 14/01/2025

Document Revision Date: 30.06.2020 ESA-F-02 COC - Chain Of Custody PROJECT: (phase and task no.)																			ADECONSULTING GROL
PROJECT: (phase and task no.) LO2										-				20	100		10,111	-	· · · · · · · · · · · · · · · · · · ·
ROJECT NUMBER -	INVOICE NUMBER		Δ	101023.0436.01		LAP	BORAT	ORYR	EFEREN	CE NO	(Lab use	ONLY	1	11	210	22.	7	04	31 Dillon
AMPLES DELIVERE	2 PV-		ADE	Consulting Group		1							HIU1023.0756.0						Jowjewe
SAIVIPLES DELIVEREL	Ј ВТ:		6/7 Millenniur	n Ct. Silverwater NSW 2	128	PECENTED BY:						/	SIGNAT	1105		-	2	1	Sec. 1.
SAMPLERS:			Jonathan Par	ker, Liam Hudson-O'Farr	ell	SAN	APLES	200	HILED:	No	RESERVE		ORESER	VATI		THO	-	- 0	CUSTODY OF INTACT
TURNAROUND:				2-DAY TAT	<u>en</u>	MINIMAL HEADSPACE : WITHIN HOLDING TIME - A LA A LAS									COSTODT SEACINIACI				
AMPLING DATE:				14/01/2025		DAT	TE: 1	at	the	-	IT	INAE-	2	4	74.	TEMADE	DATI	1210	
AFTER TEST STORAG	E:		ROOM TEMP: B FRIE	OGE: X FREEZER:	>>4	LIM	SLOT	NO.	spil		MS/EXCE	L SIGN/	TURE:	ì	(pie	COMM	ENTS:	RE OPO	N RECEIPT: 8-6 - 746
REPORT FORMAT:			HARD CORV. B E.MAA	1EK: 0		-	250	201	97	-	N	1	and	D	-	16	S/T_	5-1	W00108
ONSULTANTS SIGN	ATURE:		CONSULTANT E MAIL: IO	-		_	5.70%		ANAL	YSES RE	QUIRED	-	3.2531		<u></u>	-	NOTES		
			ofarrell@ade.group, and				Che	em Lab					Asbe	estos		Moul	d POTENTIAL HAZARDOUS CONTAM		
ROJECT MANAGERS	SIGNATURE:		PROJECT MANAGERS E M														ASBESTOS CHYTRET AND		
	Wed	lain	nicholas.maricic@ade.gr	oup	6	Suite)	(a							EPM)					
	CAMPI	C DATA			0.0	dard	Suit	XX	11					N					
LINE Complete	SAMPL		1	CONTAINER DAT	A	tanc	WN	BIE						000				9	
ciws sample ID	Sample ID (ADE)	MATRIX	SAMPLE DATE	TYPE & PRESERVATIVE	NO.	1 (5	2 (E	6					2	10				1 PH	LAB PLEASE *EMAIL COC RECEIPT:
1025880					11518	SLO	SLO	MH NH					B	H				N	Sample Comments
566	TP101_0.0-0.1	Soil	14/01/2025	G+B	2	x								x					
828	TP102_0.0-0.1	Soil	14/01/2025	G+8	2	×				-				x					1
529	TP104_0.0-0.1	Soil	14/01/2025	G+B	2	X	-	-	++	-		-	-	×		-	1950		-
570	TP105_0.0-0.1	Soil	14/01/2025	G+B	2	X	-	-	++			-		×			-	-	-
571	TP106_0.0-0.1	Soil	14/01/2025	G+B	2	x		-		-				×		1	-	-	1
572	TP107_0.0-0.1	Soil	14/01/2025	G+B	2	×				-			-	Ŷ		-	-	-	4
573	TP108_0.0-0.1	Soil	14/01/2025	G+B	2	×	1.1							x		1.0	-	-	1
174	TP109_0.0-0.1	Soil	14/01/2025	G+B	2	x								×				1	1
575	TP110_0.0-0.1	Soil	14/01/2025	G+B	2	x		4		-			C	x	2.5	1-2	1		1
210	TP111_0.0-0.1	Soil	14/01/2025	G+8	2	x				_				×	100	(E) (C)	0		1
770	TP112_0.0-0.1	Soil	14/01/2025	G+B	2	x		_		_		_	_	x			1		
59	TP115_0.0-0.1	Soil	14/01/2025	G+B	2	×	-	-		_		_		×			1	-	
580	TP115_0.0-0.1	Soil	14/01/2025	G+B	2	×	-	+			-	-		×		_	-	-	_
581	TP116 0.0-0.1	Soil	14/01/2025	G+B G+B	2	x			+ +	-			_	×		-	-	-	-
582	TP117_0.0-0.1	Soil	14/01/2025	G+B	2	×	-	+	+		-	-		×		-	-		-
583	TP101_0.4-1.0	Soil	14/01/2025	G+B	2	x	-	-	++	-				X		-	-		4
FUI	TP102_0.4-1.1	Soil	14/01/2025	G+B	2			-		+			-			-	-	×	1
114	TP103_0.3-1.1	Soil	14/01/2025	G+B	2	x							×						1
585	TP105 0.5-1.1	Soil	14/01/2025	G+B	2	-	-	-		-							-	x	4
- 34	TP106_0.3-1.1	Soil	14/01/2025	G+B	2	×	-	-		-		-	×	-	+	-	+		-
586	TP107_0.3-0.9	Soil	14/01/2025	G+B	2		-			-		-	-	-	+		-	x	4
	TP108_0.5-1.0	Soil	14/01/2025	G+B	2	-	-	+		1		+	×			-	+		1
587	TP109_0.5-1.0	Soil	14/01/2025	G+B	2	x		1		-						-		×	4
	TP110_0.5-1.0	Soil	14/01/2025	G+B	2								- î				-	×	
288	TP111_0.4-1.0	Soil	14/01/2025	G+B	2	x							x				1	-	1
545	TP112_0.4-0.9	Soil	14/01/2025	G+8	2							신상 것						x	
001	TP113_0.5-0.9	Soil	14/01/2025	G+B	2	x							x						
590	TP115_02.1.0	Soil	14/01/2025	G+B	2		-	-										×	1-
212	TP116_0.3-1.0	Soll	14/01/2025	G+B	2	x	_	-		-			x					1	1
591	TP117 04-0.9	Soil	14/01/2025	G+B	2		-	-		-			-	-		_	1	×	4
192	BR01 250114	Soil	14/01/2025	G+B	2	x	-	-	-	-			×			_			
593 .	BROR MOTHA	Soil	14/01/2025	G+B	2	x		-		-		-	_		\vdash	-	-		4
594	TB1	Water	14/01/2025	G G	2	X	-	-		-		+	-	-	$ \rightarrow $		-		4
Et a	TEL	tracer	14/01/2025	9	4	1	X	1		1		1		1					

BR02-2501144

Container Type and Preserved Plastic; PC = Unpreserved Plastic; PN = Nitric Preserved Plastic; ORC = Nitric Preserved OBC; PNA = Sodium Hydroxide Preserved Plastic; PC = HCI preserved Plastic; VC = Vial HCI Preserved; SP = Sulfuric Preserved Plastic;

VB = Vial Sodium Bisidphate Preserved; VS = Vial Sulfuric Preserved; V = Unpreserved Vial; G = Amber Glass: Unpreserved; SG = Sulfuric Preserved Amber Glass; F = Formaldehyde Preserved Glass; HS = HCI preserved Speciation bottle; Z = Zinc Acetate Preserved Bottle; ©Copyright ADE, Uncontrolled if printed

E = EDTA Preserved Bottle; ST = Sterille Bottle; J = Unpreserved Glass Jar; ASS = Plastic Bag for Acid Sulfate Soils; B = Unpreserved Bag.

Page of

17/1/25

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

CLIENT DETAILS					
Client	ADE Consulting Group				
Contact	Karin Azzam, Nicholas Marici	с			
Samplers	Jonathan Parker, Liam Hudso	on-O'Fa	arrell, Andrew Hunt		
SAMPLE RECEIPT DETAILS					
Project Number	A101023.0436.01/L02				
SLS Reference	Soil: 2500108 TB/TS: 25001	08			
Number of samples	38				
Date samples received	15.01.2024				
Time samples received	9:47 AM				
Samples Received By	Natalie Chambers				
Temperature upon receipt (°C)	8.6	Therr	mometer Ref NO.	T46	
Turn Around Time requested	48 hours				
Expected Report Date	17.01.2025				
CONDITION OF SAMPLES UPON RE	CEIVAL				
No errors in COC provided.		\checkmark			
All samples were received in good condition	ın.	\checkmark			
Evidence of chilling for samples.		\checkmark			
Appropriate use of sample containers have	e been used.	\checkmark			
Samples were delivered within holding tim	e of analysis requested.	\checkmark			
Samples to be tested for volatiles received	with zero headspace.	\checkmark			
Custody Seal intact (if used)		N/A			
COMMENTS					
This Report Contains: Sample receipt non-conformities. Summary of samples and requested analysis. Requested report deliverables.					
CONTACT US FOR ANY QUERIES					
If you have any questions with respect to t	hese samples please contact:				
Email	sls@ade.group	Conta	act Natalie Ch	ambers	
Phone	(+61) 0451 524 289	Signe	ed 👘		

N-Chambers

SYDNEY LABORATORY SERVICES

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

INFORMATION SUMMARY	
SLS Reference	Soil: 2500108 TB/TS: 2500108
Project Number	A101023.0436.01/L02
Client	ADE Consulting Group
Contact	Karin Azzam, Nicholas Maricic
Samplers	Jonathan Parker, Liam Hudson-O'Farrell, Andrew Hunt
ANALYSIS UNDERWAY - Details of the	he following samples

		Complian Data	Client Severale ID	L01	/R07	HO2	H07	N HOLD
-	Laboratory Sample ID	Sampling Date		S	>	0	0	0
	2025000566	14.01.2025	TP101_0.0-0.1	X			X	
	2025000567	14.01.2025	TP102_0.0-0.1	~			X	
	2025000568	14.01.2025	TP103_0.0-0.1	X			X	
	2025000569	14.01.2025	TP104_0.0-0.1	X			X	
	2025000570	14.01.2025	TP105_0.0-0.1	X			X	
	2025000571	14.01.2025	TP106_0.0-0.1	X			X	
	2025000572	14.01.2025	TP107_0.0-0.1	X			X	
	2025000573	14.01.2025	TP108_0.0-0.1	X			X	
	2025000574	14.01.2025	TP109_0.0-0.1	X			X	
	2025000575	14.01.2025	TP110_0.0-0.1	X			X	
	2025000576	14.01.2025	TP111_0.0-0.1	X			Х	
	2025000577	14.01.2025	TP112_0.0-0.1	X			Х	
	2025000578	14.01.2025	TP113_0.0-0.1	X			Х	
	2025000579	14.01.2025	TP114_0.0-0.1	Х			Х	
	2025000580	14.01.2025	TP115_0.0-0.1	Х			Х	
	2025000581	14.01.2025	TP116_0.0-0.1	Х			Х	
	2025000582	14.01.2025	TP117_0.0-0.1	Х			Х	
	2025000583	14.01.2025	TP101_0.4-1.0	Х		х		
		14.01.2025	TP102_0.4-1.1					Х
	2025000584	14.01.2025	TP103_0.3-1.1	Х		х		
		14.01.2025	TP104_0.3-1.0					Х
	2025000585	14.01.2025	TP105_0.5-1.1	Х		х		
		14.01.2025	TP106_0.3-1.1					Х
	2025000586	14.01.2025	TP107_0.3-0.9	х		х		
		14.01.2025	TP108 0.5-1.0					Х
	2025000587	14.01.2025	TP109_0.5-1.0	х		Х		
		14.01.2025	TP110 0.5-1.0					Х
	2025000588	14.01.2025	TP111 0.4-1.0	х		х		
		14.01.2025						Х
	2025000589	14.01.2025		x		х		
		14.01.2025						Х
	2025000590	14.01.2025		x		х		
		14.01.2025	TP116 0.4-1.0					х
	2025000591	14.01.2025	TP117 0.4-0.9	x		х		
	2025000592	14.01.2025	BR01 250114	x				
	2025000593	14.01.2025	BR02_250114	x				
	2025000594	14.01.2025			х			
	2025000595	14.01.2025	TS1		x			
1						•		

SUMMARY OF SAMPLES AND ANALYSIS REQUESTED

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Accreditation No.14664 Accredited for compliance with ISO/IEC 17025 - Testing.

This certificate of analysis contains General Comments and Analytical Results. Quality Control Report and Laboratory Quality Acceptance Criteria have been issued separately.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Domine Grie

Domenico Grieco

 Page :
 2 of 15

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

General Comments

Samples are analysed on as received basis. Sampling is not covered by NATA accreditation.

Where moisture determination has been performed, results are reported on dry weight basis.

Where the PQL of reported result differs from standard PQL, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Samples were analysed within holding time described by laboratory internal procedures if not stated otherwise. If samples delivered do not meet required analytical criteria, results will be marked with ^.

However surrogate standards are added to samples, results are not corrected for standards recoveries.

Analysis of VOC in water samples are performed on unfiltered waters (as received) spiked with surrogates and injection standards only.

Results for the analysis of metals is only for acid soluble trace metals unless indicated otherwise.

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

 Page :
 3 of 15

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Certificate of Analysis

Contact:	Karin Azzam	Date Reported:	17/01/2025
Customer:	ADE Consulting Group	No. of Samples:	28
Address:	Unit 6	Date Received:	15/01/2025
	Silverwater NSW	Date of Analysis:	15/01/2025

Cust Ref: A101023.0436.01 L02

Glossary:	*NATA accreditation does not cover the performance of this service
	ND-not detected,
	NT-not tested
	INS-Insufficient material to perform the test
	LCS-Laboratory Control Sample
	RPD-Relative Percent Difference
	N/A-Not Applicable
	< less than
	> greater than
	PQL- Practical Quantitation Limit
	^Analytical result might be compromised due to sample condition or holding time requirements
	Reaction rate 1 = Slight
	Reaction rate 2 = Moderate
	Reaction rate 3 = High
	Reaction rate 4 = Vigorous

. .

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

Report Number : A101023.0436.01 (566-593)

Certificate of Analysis

		Sample ID:	2025000566	2025000567	2025000568	2025000569	2025000570	2025000571	2025000572	2025000573	2025000574	2025000575	2025000576
	Sa	mple Name	TP101_0.0-0.1	TP102_0.0-0.1	TP103_0.0-0.1	TP104_0.0-0.1	TP105_0.0-0.1	TP106_0.0-0.1	TP107_0.0-0.1	TP108_0.0-0.1	TP109_0.0-0.1	TP110_0.0-0.1	TP111_0.0-0.1
Parameter	Units	PQL	Sampling Date: 14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
ESA-P-ORG7 & ORG8													
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		116	109	112	111	108	98	112	109	110	107	107
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01													
Arsenic	mg/kg	5	<5.0	5.1	5.6	13.4	<5.0	<5.0	5.9	<5.0	10.8	12.7	<5.0
Cadmium	mg/kg	0.1	1.19	1.02	0.89	0.77	0.37	0.48	0.63	0.72	0.59	0.58	0.82
Chromium	mg/kg	1	14.6	15.5	14.3	13.3	10.8	10.6	15.9	14.2	13.0	8.4	12.1
Copper	mg/kg	5	10.7	13.1	9.6	13.8	9.0	5.6	9.4	7.0	9.0	13.8	12.6
Lead	mg/kg	5	35.8	34.3	27.6	27.4	22.8	22.9	29.3	32.7	24.0	23.8	30.3
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	2.5	3.2	2.3	2.2	2.7	2.5	1.6	1.6	3.7	3.3	4.1
Zinc	mg/kg	5	<5.0	5.9	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	8.6
ESA-P-12													
% Moisture Content	%	1	16.0	21.5	21.1	21.8	19.7	16.7	20.9	17.1	15.4	14.3	14.4
ESA-P-ORG(12 - 15)													
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court

Page : 5 of 15 Batch Number : 2500107 A101023.0436.01 (566-Report Number :

593)

Certificate of Analysis

		Sample ID:	2025000566	2025000567	2025000568	2025000569	2025000570	2025000571	2025000572	2025000573	2025000574	2025000575	2025000576
	Sa	mple Name	TP101_0.0-0.1	TP102_0.0-0.1	TP103_0.0-0.1	TP104_0.0-0.1	TP105_0.0-0.1	TP106_0.0-0.1	TP107_0.0-0.1	TP108_0.0-0.1	TP109_0.0-0.1	TP110_0.0-0.1	TP111_0.0-0.1
Parameter	Units	PQL	Sampling Date: 14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chrysene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
PAHs Total	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
p-Terphenyl-d14 (Surr.)	%		70	76	72	68	71	62	69	73	74	69	77
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Sydney Laboratory Services

Page : 6 of 15 Batch Number : 2500107 A101023.0436.01 (566-Report Number :

593)

Certificate of Analysis

		Sample ID:	2025000566	2025000567	2025000568	2025000569	2025000570	2025000571	2025000572	2025000573	2025000574	2025000575	2025000576
	Sa	mple Name	TP101_0.0-0.1	TP102_0.0-0.1	TP103_0.0-0.1	TP104_0.0-0.1	TP105_0.0-0.1	TP106_0.0-0.1	TP107_0.0-0.1	TP108_0.0-0.1	TP109_0.0-0.1	TP110_0.0-0.1	TP111_0.0-0.1
Parameter	Units	PQL	Sampling Date: 14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		118	118	116	117	114	127	109	127	115	123	118
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PCBs Total	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Sydney Laboratory Services

 Page :
 7 of 15

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Certificate of Analysis

		Sample ID:	2025000566	2025000567	2025000568	2025000569	2025000570	2025000571	2025000572	2025000573	2025000574	2025000575	2025000576
	Sa	imple Name	TP101_0.0-0.1	TP102_0.0-0.1	TP103_0.0-0.1	TP104_0.0-0.1	TP105_0.0-0.1	TP106_0.0-0.1	TP107_0.0-0.1	TP108_0.0-0.1	TP109_0.0-0.1	TP110_0.0-0.1	TP111_0.0-0.1
Parameter	Units	PQL	Sampling Date: 14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
Aroclor 1248	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1254	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-fluorobiphenyl (Surr.)	%		126	128	121	119	121	126	138	127	123	127	123
ESA-P-ORG(3,8)												•	•
>C10-C16	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C16-C34	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C34-C40	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C40 (Sum of total)	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C14	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C15-C28	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C29-C36	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C36 (Sum of total)	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

Certificate of Analysis

		Sample ID:	2025000577	2025000578	2025000579	2025000580	2025000581	2025000582	2025000583	2025000584	2025000585	2025000586	2025000587
	Sa	mple Name	TP112_0.0-0.1	TP113_0.0-0.1	TP114_0.0-0.1	TP115_0.0-0.1	TP116_0.0-0.1	TP117_0.0-0.1	TP101_0.4-1.0	TP103_0.3-1.1	TP105_0.5-1.1	TP107_0.3-0.9	TP109_0.5-1.0
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
ESA-P-ORG7 & ORG8													
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		107	105	114	106	112	109	111	102	110	122	112
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01													
Arsenic	mg/kg	5	8.6	11.3	<5.0	<5.0	<5.0	5.0	6.1	6.1	7.5	<5.0	5.6
Cadmium	mg/kg	0.1	0.95	1.16	0.48	0.58	0.71	0.81	0.81	0.70	0.47	0.46	0.57
Chromium	mg/kg	1	17.1	18.9	13.3	13.0	12.8	14.5	9.4	6.9	4.6	6.4	8.0
Copper	mg/kg	5	9.3	9.6	6.4	7.4	<5.0	6.5	16.2	16.4	10.9	5.5	<5.0
Lead	mg/kg	5	25.3	31.1	21.7	23.3	16.7	27.0	27.7	23.9	15.9	15.6	21.5
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	5.4	3.9	1.7	2.3	2.0	3.6	2.6	<1.0	<1.0	<1.0	<1.0
Zinc	mg/kg	5	7.5	5.2	8.2	<5.0	<5.0	5.5	<5.0	<5.0	<5.0	<5.0	<5.0
ESA-P-12													
% Moisture Content	%	1	15.9	13.9	17.4	13.9	15.5	13.8	13.1	14.7	14.9	12.1	12.6
ESA-P-ORG(12 - 15)													
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Page : 9 of 15 2500107 Batch Number : A101023.0436.01 (566-Report Number :

593)

Certificate of Analysis

		Sample ID:	2025000577	2025000578	2025000579	2025000580	2025000581	2025000582	2025000583	2025000584	2025000585	2025000586	2025000587
	Sa	mple Name	TP112_0.0-0.1	TP113_0.0-0.1	TP114_0.0-0.1	TP115_0.0-0.1	TP116_0.0-0.1	TP117_0.0-0.1	TP101_0.4-1.0	TP103_0.3-1.1	TP105_0.5-1.1	TP107_0.3-0.9	TP109_0.5-1.0
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chrysene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
PAHs Total	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
p-Terphenyl-d14 (Surr.)	%		74	71	74	71	75	75	67	73	72	71	66
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Page : 10 of 15 2500107 Batch Number : A101023.0436.01 (566-Report Number : 593)

Certificate of Analysis

		Sample ID:	2025000577	2025000578	2025000579	2025000580	2025000581	2025000582	2025000583	2025000584	2025000585	2025000586	2025000587
	Sa	mple Name	TP112_0.0-0.1	TP113_0.0-0.1	TP114_0.0-0.1	TP115_0.0-0.1	TP116_0.0-0.1	TP117_0.0-0.1	TP101_0.4-1.0	TP103_0.3-1.1	TP105_0.5-1.1	TP107_0.3-0.9	TP109_0.5-1.0
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		118	114	113	127	115	128	118	118	123	109	106
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PCBs Total	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Sydney Laboratory Services

 Page :
 11 of 15

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Certificate of Analysis

		Sample ID:	2025000577	2025000578	2025000579	2025000580	2025000581	2025000582	2025000583	2025000584	2025000585	2025000586	2025000587
	Sa	mple Name	TP112_0.0-0.1	TP113_0.0-0.1	TP114_0.0-0.1	TP115_0.0-0.1	TP116_0.0-0.1	TP117_0.0-0.1	TP101_0.4-1.0	TP103_0.3-1.1	TP105_0.5-1.1	TP107_0.3-0.9	TP109_0.5-1.0
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
Aroclor 1248	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1254	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-fluorobiphenyl (Surr.)	%		125	120	121	130	124	139	123	126	129	118	110
ESA-P-ORG(3,8)													
>C10-C16	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C16-C34	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C34-C40	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C40 (Sum of total)	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C14	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C15-C28	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C29-C36	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C36 (Sum of total)	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

Page : 12 of 15 Batch Number : 2500107 Report Number : A101023.0436.01 (566-593)

Certificate of Analysis

		Sample ID:	2025000588	2025000589	2025000590	2025000591	2025000592	2025000593
	Sa	mple Name	TP111_0.4-1.0	TP113_0.5-0.9	TP115_0.3-1.0	TP117_0.4-0.9	BR01_250114	BR02_250114
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
ESA-P-ORG7 & ORG8								
Benzene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of BTEX	mg/kg	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Total Xylenes	mg/kg	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Fluorobenzene (Surr.)	%		112	101	114	114	98	125
C6-C10	mg/kg	35	<35	<35	<35	<35	<35	<35
C6-C10 minus BTEX	mg/kg	35	<35	<35	<35	<35	<35	<35
C6-C9	mg/kg	25	<25	<25	<25	<25	<25	<25
ESA-MP-01,ICP-01								
Arsenic	mg/kg	5	7.9	<5.0	<5.0	10.9	11.2	5.7
Cadmium	mg/kg	0.1	0.22	1.31	0.70	0.70	0.24	1.42
Chromium	mg/kg	1	4.7	23.7	15.1	12.1	11.6	24.5
Copper	mg/kg	5	7.7	17.4	5.7	6.9	7.2	7.2
Lead	mg/kg	5	13.5	34.1	18.2	19.6	24.5	31.4
Mercury	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1	<1.0	3.0	<1.0	1.6	2.5	4.0
Zinc	mg/kg	5	5.1	20.9	<5.0	6.3	5.2	14.7
ESA-P-12								
% Moisture Content	%	1	10.2	16.2	14.3	14.6	17.5	15.2
ESA-P-ORG(12 - 15)								
Acenaphthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Acenaphthylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30

Page : 13 of 15 Batch Number : 2500107 Report Number : A101023.0436.01 (566-593)

Certificate of Analysis

		Sample ID:	2025000588	2025000589	2025000590	2025000591	2025000592	2025000593
	Sa	mple Name	TP111_0.4-1.0	TP113_0.5-0.9	TP115_0.3-1.0	TP117_0.4-0.9	BR01_250114	BR02_250114
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
Anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Chrysene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluoranthene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Pyrene	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
PAHs Total	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Benzo(a)pyrene TEQ (Half PQL)	mg/kg	0.3	0.35	0.35	0.35	0.35	0.35	0.35
Benzo(a)pyrene TEQ (PQL)	mg/kg	0.3	0.70	0.70	0.70	0.70	0.70	0.70
p-Terphenyl-d14 (Surr.)	%		65	64	66	73	71	73
aldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
a-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDD	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Sydney Laboratory Services

Page : 14 of 15 Batch Number : 2500107 Report Number : A101023.0436.01 (566-593)

Certificate of Analysis

		Sample ID:	2025000588	2025000589	2025000590	2025000591	2025000592	2025000593
	Sa	mple Name	TP111_0.4-1.0	TP113_0.5-0.9	TP115_0.3-1.0	TP117_0.4-0.9	BR01_250114	BR02_250114
Parameter	Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
4,4'-DDE	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TCMX (Surr.)	%		102	100	110	117	110	118
chlorpyrifos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PCBs Total	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1016	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Page : 15 of 15 Batch Number : 2500107 Report Number : A101023.0436.01 (566-593)

Certificate of Analysis

	Sample ID:	2025000588	2025000589	2025000590	2025000591	2025000592	2025000593
Sa	mple Name	TP111_0.4-1.0	TP113_0.5-0.9	TP115_0.3-1.0	TP117_0.4-0.9	BR01_250114	BR02_250114
Units	PQL	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025	14/01/2025
mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
mg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
%		107	108	118	124	116	125
mg/kg	50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	<100	<100
mg/kg	50	<50	<50	<50	<50	<50	<50
mg/kg	100	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	<100	<100
mg/kg	100	<100	<100	<100	<100	<100	<100
	So Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Sample ID: Sample Name Units PQL mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 100 mg/kg 100 mg/kg 50 mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 100	Sample ID: 2025000588 Sample Name TP111_0.4-1.0 Units PQL 14/01/2025 mg/kg 0.5 <0.50 mg/kg 0.5 <0.50 mg/kg 0.5 <0.50 mg/kg 0.5 <0.50 mg/kg 0.5 <0.50 mg/kg 0.5 <0.50 mg/kg 100 <100 D: 2025000588 2025000589 Sample Name TP111_0.4-1.0 TP113_0.5-0.9 Units PQL 14/01/2025 14/01/2025 mg/kg 0.5 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100	Sample ID: 2025000588 2025000589 2025000590 Sample Name TP111_0.4-1.0 TP113_0.5-0.9 TP115_0.3-1.0 Units PQL 14/01/2025 14/01/2025 14/01/2025 mg/kg 0.5 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 mg/kg 50 <50 <0.50 <0.50 mg/kg 100 <100 <100 <100 mg/kg 100	Sample ID: 2025000588 2025000589 2025000589 2025000590 2025000591 Sample Name TP111_0.4-1.0 TP113_0.5-0.9 TP115_0.3-1.0 TP117_0.4-0.9 Units PQL 14/01/2025 14/01/2025 14/01/2025 14/01/2025 14/01/2025 mg/kg 0.5 <0.50 <0.50 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 <0.50 <0.50 mg/kg 0.5 <0.50 <0.50 <0.50 <0.50 <0.50 mg/kg 50 <0.50 <0.50 <0.50 <0.50 <0.50 mg/kg 100 <100 <100 <100 <100 <100 mg/kg 100 <100 <100 <100 <100 <100 mg/kg 100 <100 <100 <100 <100 <100 mg/kg 100 <100	Sample ID: 2025000588 2025000589 2025000590 2025000591 2025000592 Sample Name TP111_0.4-1.0 TP113_0.5-0.9 TP115_0.3-1.0 TP117_0.4-0.9 BR01_250114 Units PQL 14/01/2025	

A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950 Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669
 Page :
 1 of 14

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Accreditation No.14664 Accredited for compliance with ISO/IEC 17025 - Testing.

This Quality Control Report contains results of QAQC samples analysis and the Laboratory Acceptance Criteria.

This report supersedes any previous report(s) with this reference. This document shall not be reproduced, except in full.

This report has been electronically signed by authorised signatories below.

Authorised By

Domina Griego

Domenico Grieco

General Comments

 Page :
 2 of 14

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Duplicate samples and matrix spike may not be prepared on smaller jobs, however are analysed at frequency. QAQC samples shown within the report as e.g. Batch Blank, Batch Matrix Spike were performed on samples not reported on that Certificate of Analysis.

Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in the same manner as for samples.

Duplicate This is the interlaboratory split of a random sample from the processed batch

Matrix Spike A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. Surr. (Surrogate Spike) Surrogates are known additions to each sample, blank and matrix spike or LCS in a batch. Surrogates are chosen as a compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Blank shall be < PQL

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics/PFAS is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150%

SLS is responsible for all the information in the report, except that provided by the customer.

All sampling information included in the report has been provided by customer.

Information provided by the customer can affect the validity of the results.

Quality Control Report

 Page :
 3 of 14

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Contact:	Karin Azzam	Date Reported:	17/01/2025
Customer:	ADE Consulting Group	No. of Samples:	40
Address:	Unit 6	Date Received:	15/01/2025
	Silverwater NSW	Date of Analysis:	15/01/2025

Cust Ref: A101023.0436.01 L02

Glossary:	*NATA accreditation does not cover the performance of this service								
	ND-not detected,								
	NT-not tested								
	INS-Insufficient material to perform the test								
	LCS-Laboratory Control Sample								
	RPD-Relative Percent Difference								
	N/A-Not Applicable								
	< less than								
	> greater than								
	PQL- Practical Quantitation Limit								
	^Analytical result might be compromised due to sample condition or holding time requirements								
	Reaction rate 1 = Slight								
	Reaction rate 2 = Moderate								
	Reaction rate 3 = High								
	Reaction rate 4 = Vigorous								

Quality Control Report

		Sample ID:	D202500056701	D202500057601	D202500058601	D202500061101
	Sa	mple Name	TP102_0.0-0.1	TP111_0.0-0.1	TP107_0.3-0.9	ROS-MAC22_TP2
Parameter	Units	PQL		14/01/2025		
ESA-MP-01,ICP-01						
Arsenic			Pass	Pass	Pass	Pass
Cadmium			Pass	Pass	Pass	Pass
Chromium			Pass	Pass	Pass	Pass
Copper			Pass	Pass	Pass	Pass
Lead			Pass	Pass	Pass	Pass
Mercury			Pass	Pass	Pass	Pass
Nickel			Pass	Pass	Pass	Pass
Zinc			Pass	Pass	Pass	Pass

Sample ID: D202500056702 D202500057602 D202500058602 D202500061102

	Sa	imple Name	TP102_0.0-0.1	TP111_0.0-0.1	TP107_0.3-0.9	ROS-MAC22_TP2
Parameter	Units	PQL				
ESA-P-ORG7 & ORG8						
Benzene			Pass	Pass	Pass	Pass
Toluene			Pass	Pass	Pass	Pass
Ethylbenzene			Pass	Pass	Pass	Pass
m.p Xylene			Pass	Pass	Pass	Pass
o Xylene			Pass	Pass	Pass	Pass
Fluorobenzene (Surr.)	%		114	105	104	100
C6-C10			Pass	Pass	Pass	Pass
C6-C9			Pass	Pass	Pass	Pass
		Sample ID:	D202500056703	D202500057603	D202500058603	D202500061103
	Sa	imple Name	TP102_0.0-0.1	TP111_0.0-0.1	TP107_0.3-0.9	ROS-MAC22_TP2

Page :	4 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

ESA-P-ORG(12 - 15)						
Acenaphthene			Pass	Pass	Pass	Pass
Acenaphthylene			Pass	Pass	Pass	Pass
Anthracene		i i i i i i i i i i i i i i i i i i i	Pass	Pass	Pass	Pass
Benzo[a]anthracene			Pass	Pass	Pass	Pass
Benzo[a]pyrene		i i i i i i i i i i i i i i i i i i i	Pass	Pass	Pass	Pass
Benzo[g,h,i]perylene			Pass	Pass	Pass	Pass
Benzo[b,k]fluoranthene			Pass	Pass	Pass	Pass
Chrysene			Pass	Pass	Pass	Pass
Dibenzo[a,h]anthracene			Pass	Pass	Pass	Pass
Fluoranthene			Pass	Pass	Pass	Pass
Fluorene			Pass	Pass	Pass	Pass
Indeno(1,2,3-cd)pyrene			Pass	Pass	Pass	Pass
Naphthalene			Pass	Pass	Pass	Pass
Phenanthrene			Pass	Pass	Pass	Pass
Pyrene			Pass	Pass	Pass	Pass
p-Terphenyl-d14 (Surr.)	%		72	73	75	70
aldrin			Pass	Pass	Pass	Pass
a-BHC			Pass	Pass	Pass	Pass
b-BHC			Pass	Pass	Pass	Pass
d-BHC			Pass	Pass	Pass	Pass
g-BHC (lindane)			Pass	Pass	Pass	Pass
cis-chlordane			Pass	Pass	Pass	Pass
trans-chlordane			Pass	Pass	Pass	Pass
4,4'-DDD			Pass	Pass	Pass	Pass
4,4'-DDE			Pass	Pass	Pass	Pass
4,4'-DDT			Pass	Pass	Pass	Pass
dieldrin			Pass	Pass	Pass	Pass
endosulfan I			Pass	Pass	Pass	Pass
endosulfan II			Pass	Pass	Pass	Pass
endosulfan sulfate			Pass	Pass	Pass	Pass

endrin		Pass	Pass	Pass	Pass
endrin aldehyde		Pass	Pass	Pass	Pass
endrin ketone		Pass	Pass	Pass	Pass
heptachlor		Pass	Pass	Pass	Pass
heptachlor epoxide		Pass	Pass	Pass	Pass
hexachlorobenzene		Pass	Pass	Pass	Pass
methoxychlor		Pass	Pass	Pass	Pass
TCMX (Surr.)	%	121	116	113	110
chlorpyrifos		Pass	Pass	Pass	Pass
chlorpyrifos methyl		Pass	Pass	Pass	Pass
diazinon		Pass	Pass	Pass	Pass
fenchlorphos		Pass	Pass	Pass	Pass
methyl parathion		Pass	Pass	Pass	Pass
prophos		Pass	Pass	Pass	Pass
tributylphosphorotrithioite		Pass	Pass	Pass	Pass
Aroclor 1016		Pass	Pass	Pass	Pass
Aroclor 1221		Pass	Pass	Pass	Pass
Aroclor 1232		Pass	Pass	Pass	Pass
Aroclor 1242		Pass	Pass	Pass	Pass
Aroclor 1248		Pass	Pass	Pass	Pass
Aroclor 1254		Pass	Pass	Pass	Pass
Aroclor 1260		Pass	Pass	Pass	Pass
2-fluorobiphenyl (Surr.)	%	129	123	126	119

tralia Pty Ltd

Sydney Laboratory Services A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669
 Page :
 6 of 14

 Batch Number :
 2500107

 Report Number :
 A101023.0436.01 (566-593)

Page :	7 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

Sample ID:		D202500056704	D202500057604	D202500058604	D202500061104	
Sample Name		TP102_0.0-0.1	TP111_0.0-0.1	TP107_0.3-0.9	ROS-MAC22_TP2	
Parameter	Units	PQL				
ESA-P-ORG(3,8)						
>C10-C16			Pass	Pass	Pass	Pass
>C16-C34			Pass	Pass	Pass	Pass
>C34-C40			Pass	Pass	Pass	Pass
>C10-C14			Pass	Pass	Pass	Pass
>C15-C28			Pass	Pass	Pass	Pass
>C29-C36			Pass	Pass	Pass	Pass

Sample ID: Q2025000118 Q2025000128

Sample N	lame
----------	------

Parameter	Units	PQL	Metals Blank - Soil	Metals Blank - Soil
ESA-MP-01,ICP-01				
Arsenic	mg/kg	5	<5.0	<5.0
Cadmium	mg/kg	0.1	<0.10	<0.10
Chromium	mg/kg	1	<1.0	<1.0
Copper	mg/kg	5	<5.0	<5.0
Lead	mg/kg	5	<5.0	<5.0
Mercury	mg/kg	0.1	<0.10	<0.10
Nickel	mg/kg	1	<1.0	<1.0
Zinc	mg/kg	5	<5.0	<5.0

Zinc

Page :	8 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

Sample ID: Q2025000119 Q2025000129 Sample Name Metals Blank Sp-Metals Blank Sp-Parameter Units PQL Soil Soil ESA-MP-01,ICP-01 Arsenic % 82 100 % 82 91 Cadmium Chromium % 90 93 % 83 85 Copper Lead % 90 95 Mercury % 106 113 % 95 Nickel 91 % 98 89

Sample ID: Q2025000120 Q2025000130

Sample Name

Parameter	Units	PQL	BTEX Blank - Soil	BTEX Blank - Soil
ESA-P-ORG7 & ORG8				
Benzene	mg/kg	0.5	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50
Ethylbenzene	mg/kg	1	<1.0	<1.0
m.p Xylene	mg/kg	2	<2.0	<2.0
o Xylene	mg/kg	1	<1.0	<1.0
C6-C10	mg/kg	35	<35	<35
C6-C9	mg/kg	25	<25	<25

Page :	9 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

Sample ID: Q2025000121 Q2025000131 Sample Name Units PQL BTEX Blank Sp-Soil BTEX Blank Sp-Soil Parameter ESA-P-ORG7 & ORG8 Benzene % 108 110 Toluene % 80 90 Ethylbenzene % 70 77 % 93 m.p Xylene 76 o Xylene % 90 122 Fluorobenzene (Surr.) % 117 98

Sample ID: Q2025000122 Q2025000132

Sample Name

Parameter	Units	PQL	PCB Blank - Soil	PCB Blank - Soil
ESA-P-ORG(12 - 15)				
Acenaphthene	mg/kg	0.3	<0.30	<0.30
Acenaphthylene	mg/kg	0.3	<0.30	<0.30
Anthracene	mg/kg	0.3	<0.30	<0.30
Benzo[a]anthracene	mg/kg	0.3	<0.30	<0.30
Benzo[a]pyrene	mg/kg	0.3	<0.30	<0.30
Benzo[g,h,i]perylene	mg/kg	0.3	<0.30	<0.30
Benzo[b,k]fluoranthene	mg/kg	0.3	<0.30	<0.30
Chrysene	mg/kg	0.3	<0.30	<0.30
Dibenzo[a,h]anthracene	mg/kg	0.3	<0.30	<0.30
Fluoranthene	mg/kg	0.3	<0.30	<0.30
Fluorene	mg/kg	0.3	<0.30	<0.30
Indeno(1,2,3-cd)pyrene	mg/kg	0.3	<0.30	<0.30
Naphthalene	mg/kg	0.3	<0.30	<0.30
Phenanthrene	mg/kg	0.3	<0.30	<0.30
Pyrene	mg/kg	0.3	<0.30	<0.30
aldrin	mg/kg	0.1	<0.10	<0.10

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 **Ph:** (02) 9648-6669

Page :	10 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

a-BHC	mg/kg	0.1	<0.10	<0.10
b-BHC	mg/kg	0.1	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10
g-BHC (lindane)	mg/kg	0.1	<0.10	<0.10
cis-chlordane	mg/kg	0.1	<0.10	<0.10
trans-chlordane	mg/kg	0.1	<0.10	<0.10
4,4'-DDD	mg/kg	0.1	<0.10	<0.10
4,4'-DDE	mg/kg	0.1	<0.10	<0.10
4,4'-DDT	mg/kg	0.1	<0.10	<0.10
dieldrin	mg/kg	0.1	<0.10	<0.10
endosulfan I	mg/kg	0.2	<0.20	<0.20
endosulfan II	mg/kg	0.2	<0.20	<0.20
endosulfan sulfate	mg/kg	0.1	<0.10	<0.10
endrin	mg/kg	0.2	<0.20	<0.20
endrin aldehyde	mg/kg	0.1	<0.10	<0.10
endrin ketone	mg/kg	0.1	<0.10	<0.10
heptachlor	mg/kg	0.1	<0.10	<0.10
heptachlor epoxide	mg/kg	0.1	<0.10	<0.10
hexachlorobenzene	mg/kg	0.1	<0.10	<0.10
methoxychlor	mg/kg	0.1	<0.10	<0.10
chlorpyrifos	mg/kg	0.1	<0.10	<0.10
chlorpyrifos methyl	mg/kg	0.1	<0.10	<0.10
diazinon	mg/kg	0.1	<0.10	<0.10
fenchlorphos	mg/kg	0.1	<0.10	<0.10
methyl parathion	mg/kg	0.1	<0.10	<0.10
prophos	mg/kg	0.1	<0.10	<0.10
tributylphosphorotrithioite	mg/kg	0.1	<0.10	<0.10
Aroclor 1016	mg/kg	0.5	<0.50	<0.50
Aroclor 1221	mg/kg	0.5	<0.50	<0.50
Aroclor 1232	mg/kg	0.5	<0.50	<0.50
Aroclor 1242	mg/kg	0.5	<0.50	<0.50

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court Silverwater 2128 Ph: (02) 9648-6669

Page :	11 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

Aroclor 1248	mg/kg	0.5	<0.50	<0.50
Aroclor 1254	mg/kg	0.5	<0.50	<0.50
Aroclor 1260	mg/kg	0.5	<0.50	<0.50

Sample ID: Q2025000123 Q2025000133

Sample Name

Parameter	Units	PQL	PCB Blank Sp - Soil	PCB Blank Sp - Soil			
ESA-P-ORG(12 - 15)							
Acenaphthene	%		110	94			
Anthracene	%		107	91			
Fluoranthene	%		94	81			
Naphthalene	%		128	108			
Phenanthrene	%		106	92			
Pyrene	%		98	83			
p-Terphenyl-d14 (Surr.)	%		64	61			
aldrin	%		110	92			
endrin	%		113	125			
hexachlorobenzene	%		124	103			
TCMX (Surr.)	%		106	89			
chlorpyrifos	%		115	100			
diazinon	%		105	93			
2-fluorobiphenyl (Surr.)	%		116	98			
Aroclor 1016	%		113	100			

Page :	12 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

Sample ID: Q2025000124 Q2025000134

Sample Name							
Parameter Units PQL TRH Blank-Soil TRH Blank-So							
ESA-P-ORG(3,8)							
>C10-C16	mg/kg	50	<50	<50			
>C16-C34	mg/kg	100	<100	<100			
>C34-C40	mg/kg	100	<100	<100			
>C10-C14	mg/kg	50	<50	<50			
>C15-C28	mg/kg	100	<100	<100			
>C29-C36	mg/kg	100	<100	<100			

Sample ID: Q2025000125 Q2025000135

Sample Name

Parameter	Units	PQL	TRH Blank Spike- Soil	TRH Blank Spike- Soil
ESA-P-ORG(3,8)				
>C10-C16	%		98	99
>C10-C14	%		95	95

Sample ID: S202500056601 S202500061001

	Sa	mple Name	TP101_0.0-0.1	ROS-MAC22_TP1
Parameter	Units	PQL		
ESA-MP-01,ICP-01	·	•`		
Arsenic	%		102	121
Cadmium	%		87	89
Chromium	%		92	88
Copper	%		94	85
Lead	%		88	87
Mercury	%		114	115
Nickel	%		94	91
Zinc	%		97	103

Page :	13 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

		Sample ID:	S202500056602	S202500061002
	Sa	mple Name	TP101_0.0-0.1	ROS-MAC22_TP1
Parameter	Units	PQL		
ESA-P-ORG-07 & 08				
Benzene	%		108	96
Toluene	%		82	94
Ethylbenzene	%		72	112
m.p Xylene	%		67	78
o Xylene	%		97	108
Fluorobenzene (Surr.)	%		116	109

Sample ID: S202500056603 S202500061003

Sample Name TP101_0.0-0.1 ROS-MAC22_TP1

		-		
Parameter	Units	PQL		
ESA-P-ORG(12 - 15)				
Acenaphthene	%		107	113
Anthracene	%		102	108
Fluoranthene	%		92	98
Naphthalene	%		122	126
Phenanthrene	%		100	107
Pyrene	%		94	99
p-Terphenyl-d14 (Surr.)	%		62	71
aldrin	%		107	110
endrin	%		136	133
hexachlorobenzene	%		118	123
TCMX (Surr.)	%		103	106
chlorpyrifos	%		111	119
diazinon	%		101	111
Aroclor 1016	%		104	109
2-fluorobiphenyl (Surr.)	%		110	115

Page :	14 of 14
Batch Number :	2500107
Report Number :	A101023.0436.01 (566- 593)

Sample ID: S202500056604 S202500061004 Sample Name TP101 0.0-0.1 ROS-MAC22 TP1

Parameter Units PQL				
	Parameter	Units	PQL	

ESA-P-ORG(3,8)			
>C10-C16	%	100	104
>C10-C14	%	99	101

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

 Analysis report:
 A101023.0436.01

 Laboratory LOT NO:
 2500107

Date Received:	15.01.2025
Date Analysed:	16.01.2025
Report Date:	16.01.2025
Client:	ADE Consulting Group
Job Location:	As Received
• • • • • • •	

Analytical method: Polarised Light Microscopy with dispersion staining (ADE method ABI) *Asbestos identification as per "National Environment Protection (Assessment of site contamination) Measure, Schedule B1" and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" is not coverd by NATA scope of accreditation

Analysis performed by:

Grace Tig

Grace (Weichen) Jia Approved asbestos identifier

Results Authorised By:

(mae T.g

Grace (Weichen) Jia Approved Signatory

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client

Sample analysed as received.

Samples are stored for minimum period of 1 month if longer time is not advised by client.

Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.01g/kg (0.001% w/w) for friable asbestos and 0.1g/kg (0.01% w/w) for bonded asbestos.

This form of analysis is outside the scope of NATA accreditation.

Bonded asbestos containing material (bonded ACM): Bonded ACM comprises asbestos-containing-material which is in sound condition, although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve.

Fibrous asbestos (FA): FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF): AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

	Client Sample ID.	Laboratory	Sample	Sample Dimensions	Weight (Dry Weight)	Trace Analysis	Result	Comments
Mulha Mulha <th< td=""><td></td><td>sample No.</td><td>Description/ Matrix</td><td>otherwise</td><td></td><td>Completed Y/N</td><td></td><td></td></th<>		sample No.	Description/ Matrix	otherwise		Completed Y/N		
VILUAL ALLANDA VILUAL ALLANDADADA VILUAL ALLANDADADADA <	19101_0.0-0.1	2025000566	Granulated dark soll	Suumi	627 grams		No chrysotie astestos detected by polarized light microscopy including dispersion staining.	Nil
NB Image: Array of the second s							No Amosite asbestos detected by polarized light microscopy including dispersion staining	Nil
Normal set in the se						Yes, no trace asbestos detected by	No Crocidolite asbestos detected by polarized light microscopy including	NI
VILUAL IN LANARY AND AND AND AND AND AND AND AND AND AND						polarized light microscopy including dispersion staining.	dispersion staining.	NI
THI, I.A. I.A.M. <thi.a.m.< th=""> I.A.M. I.A.M. I.A.M.<</thi.a.m.<>							polarized light microscopy including dispersion staining.	
NULL NAME Availability Source and so							Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
VICUUATION CONSISTING Image: Construction of the construction of t	TP102_0.0-0.1	2025000567	Granulated dark soil	500ml	595 grams		No Chrysotile asbestos detected by polarized light microscopy including descenice statistics	Nil
VILUAL INCLUSION INTERCACT INTERC							No Amosite asbestos detected by polarized light microscopy including dispersion	NI
Virtual Virtual <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Yes, no trace</td><td>No Crocidolite asbestos detected by</td><td>Nil</td></t<>						Yes, no trace	No Crocidolite asbestos detected by	Nil
TBU AND PARAMENA						polarized light microscopy including dispersion staining.	polarized light microscopy including dispersion staining.	
VIRU. 1.6.1 Control Add add add add add add add add add add							No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
VID. 5331 DODDNO Unitarial data with problem in the second secon							Organic fibres detected by polarized light microscopy including dispersion staining.	NI
VID.141 VID.141 <t< td=""><td>TP103_0.0-0.1</td><td>2025000568</td><td>Granulated dark soil</td><td>500ml</td><td>597 grams</td><td></td><td>No Chrysotile asbestos detected by polarized light microscopy including</td><td>Nil</td></t<>	TP103_0.0-0.1	2025000568	Granulated dark soil	500ml	597 grams		No Chrysotile asbestos detected by polarized light microscopy including	Nil
VID.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1							dispersion staining. No Amosite asbestos detected by polarized	Nil
Value Value <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Yes, no trace</td><td>light microscopy including dispersion staining.</td><td>Arii</td></th<>						Yes, no trace	light microscopy including dispersion staining.	Arii
View View <th< td=""><td></td><td></td><td></td><td></td><td></td><td>asbestos detected by polarized light microscopy including</td><td>polarized light microscopy including dispersion staining.</td><td>Pell</td></th<>						asbestos detected by polarized light microscopy including	polarized light microscopy including dispersion staining.	Pell
VIDUAL SUBSER VIDUAL S						dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	NI
VERL 36.21 PTEL 36.21							Organic fibres detected by polarized light microscopy including dispersion staining.	NII
VID.5.5.1 VID.5017 Kanada da kal SODI State and set of sector sector dependencies Improvemention Improvementintermanie Improvemention	TP104_0.0-0.1	2025000569	Granulated dark soil	500ml	668 grams		No Chrysotile asbestos detected by	Nil
Yes, 50.01 Model data kal Storage Market data kalo							polarized light microscopy including dispersion staining.	NI
Table in the second second by particular second s						No. or form	light microscopy including dispersion staining.	
VIDA 0.0017 Output data of and the standard by digeneration basis of approximation of the standard by pointed digeneration basis of approximation distandard by pointed digeneration basis of approximation distandard by pointed digeneration basis of approximation distandard by pointed digeneration basis of approximation distandard by pointed dinapproximation digeneration basis of approximation distandard by p						asbestos detected by polarized light microscopy including	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
P19, 3 4.1 2130037 Oraclast data of 1 SSD MI SSB grants Adjustment dataset incocory solubidity duration italing. M P19, 3 6.1. 21300377 Oraclast data of 1 SSD MI SSB grants Markets dataset data of 1 M P19, 3 6.1.1 21300377 Oraclast data of 1 Markets dataset data of 1 M Markets dataset dataset data of 1 M P19, 3 6.1.1 21300377 Oraclast datase						dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	NI
VEX. 50.0.1 VEX. 50.0.1							dispersion staining. Organic fibres detected by polarized light	Nil
128. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	TP105 0.0-0.1	2025000570	Granulated dark soil	500ml	585 grams		No Chrysotile asbestos detected by	NI
Pilo Solution <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>polarized light microscopy including dispersion staining.</td><td></td></t<>							polarized light microscopy including dispersion staining.	
View <							No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
Pilog 20 01 201000371 Granutated dark sol Soldwir Soldw						Yes, no trace asbestos detected by polarized light	No Crocidolite asbestos detected by polarized light microscopy including dispersion statelon	Nil
Prior Description Figure 1 End of the second point stains, se						dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
Prior Solar <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>dispersion staining. Organic fibres detected by polarized light</td><td>Nil</td></th<>							dispersion staining. Organic fibres detected by polarized light	Nil
 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March 2001 In March	TD105 0.0.0.1	2025000571	Consulated dark cell	r001	F00		microscopy including dispersion staining.	NI .
Pior 0.0 0 1 Solution is about and business housing in the parameter is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution is a solution in the solution is a solution in the solution is a solution in the solutis a solution is solution in the solution is a solution	11108_0.0-0.1	2023000571	Grandiated Gark son	300111	366 grans		polarized light microscopy including dispersion staining.	Pell
Ves. no trace polarized (gr. horizosi) encludar polarized (gr. horizosi) encludar digencion stating Be- conception (gr. horizosi) encludar horizosi (gr. horizosi) encludar horizosi (gr. horizosi) encludar horizosi (gr. horizosi) encludar horizosi horizosi (gr. horizosi) encludar horizosi horizosi (gr. horizosi) encludar horizosi h							No Amosite asbestos detected by polarized light microscopy including dispersion staining.	NI
Horizota Linking Ho						Yes, no trace asbestos detected by polarized light	No Crocidolite asbestos detected by polarized light microscopy including	Nil
Pitor_0.0.01 Option Stole gramm Mile Pitor_0.0.01 025000572 Genulated dark soll Stole gramm No Ohycotile statests detected by polarized light microscoly including dispersion stating. Mile Pitor_0.0.01 025000572 Genulated dark soll Stole gramm No Ohycotile statests detected by polarized light microscoly including dispersion statestice Mile Pitor_0.0.01 025000572 Genulated dark soll Stole gramm No Ohycotile statests detected by polarized light microscoly including dispersion statestice Mile Pitor_0.0.01 025000573 Genulated dark soll Stole gramm No Ohycotile statests detected by polarized light microscoly including dispersion statestice Mile Pitol_0.0.01 025000573 Genulated dark soll Stole gramm No Ohycotile statestice detected by polarized light microscoly including dispersion statestice Mile Pitol_0.0.01 Stole gramm Stole gramm No Ohycotile statestice detected by polarized light microscoly including dispersion statestice Mile Pitol_0.0.01 Stole gramm No Ohycotile statestice detected by polarized light microscoly including dispersion statestice Mile Pitol_0.0.01 Stole gramm No Ohycotile stat						microscopy including dispersion staining.	aspersion staining. No Synthetic Mineral Fibres detected by nolarized light microscores inclusion	Nil
PI07_0.0.01 Openational data solution S							dispersion staining. Organic fibres detected by polarized light	Nil
P202_0.0.0.1 D33200077 Granulated data isol 500ml 554 gram. No No No P202_0.0.0.1 NO No							microscopy including dispersion staining.	
Y100_0.001 201000077 Grandated dark ool 500 gram. 550 gram. Vic., no trace taring. Vic., no trace taring. No No Y100_0.001 201000077 Grandated dark ool 500 gram. Vic., no trace taring. No No Y100_0.001 201000077 Grandated dark ool 500 gram. Vic., no trace taring. No No Y100_0.001 201000077 Grandated dark ool 500 gram. Vic., no trace taring. No No Y100_0.001 201000077 Grandated dark ool 500 gram. No No No Y100_0.001 201000077 Grandated dark ool 500 gram. No No No Y100_0.001 201000077 Grandated dark ool 500 gram. No No No Y100_0.001 201000077 Grandated dark ool 500 gram. No No No Y100_0.001 201000077 Grandated dark ool 500 gram. No No No Y100_0.001 201000077 Grandated dark ool 500 gram. <td>TP107_0.0-0.1</td> <td>2025000572</td> <td>Granulated dark soil</td> <td>500ml</td> <td>559 grams</td> <td></td> <td>No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.</td> <td>Nil</td>	TP107_0.0-0.1	2025000572	Granulated dark soil	500ml	559 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
Vis. p. kite Mile Mile 17108_0.0.0.1 203500573 Granulated dark soll 500ml 550 gram. No Mile Mile 17108_0.0.0.1 203500573 Granulated dark soll 500ml 550 gram. No Mile Mile 17108_0.0.0.1 203500573 Granulated dark soll 500ml 550 gram. No Mile Mile 17108_0.0.0.1 203500573 Granulated dark soll 500ml 550 gram. No Mile Mile 17108_0.0.0.1 Mile Mile Mile Mile Mile 17108_0.0.0.1 Mile Mile Mile Mile Mile 17108_0.0.0.1 Mile Mile Mile Mile Mile 17108_0.0.0.1 Mile Mile Mile Mile Mile 17108_0.0.0.1 Mile Mile Mile Mile Mile 17108_0.0.0.1 Mile Mile Mile Mile Mile 17108_0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0							No Amosite asbestos detected by polarized light microscopy including dispersion staining	Ni
Prior Granulated dark sol Solon Solo grant Not Not TP100_0.0.0 1 025000573 Granulated dark sol Solon Solo grant Not Not TP100_0.0.0 1 025000573 Granulated dark sol Solon Solo grant Not Not Not TP100_0.0.0 1 Organic Theme detected by common composition common Not Not Not TP100_0.0.0 1 Organic Theme detected by common composition common Not Not Not TP100_0.0.0 1 Organic Theme detected by common composition common Not Not Not TP100_0.0.0 1 Organic Theme detected by common composition common Not Not Not TP100_0.0.0 1 Stol grant Not Not composition common Not TP100_0.0.0 1 Stol grant Not composition compositi						Yes, no trace asbestos detected by	No Crocidolite asbestos detected by polarized light microscopy including	NI
YEAR_BOAL Consulted dark soil Solamin Solamin Mail YEAR_BOAL Value dark soil Solamin Solamin Mail YEAR_BOAL Value dark soil Solamin Solamin Mail YEAR_BOAL Value dark soil Solamin Solamin Mail YEAR_BOAL Value dark soil Solamin Solamin Mail Year Value dark solamin Solamin Mail Mail Year Value dark solamin Value dark solamin Mail Mail Year Value dark solamin Value dark solamin Mail Mail Year Value dark solamin Mail Mail Mail						microscopy including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by	Nil
PIX0E_0.0.01 X02500073 Granulated dark soil S00min S00 grams No No PIX0E_0.0.01 X02500073 Granulated dark soil S00min S00 grams No No No No VEX.ND X02500073 Granulated dark soil S00min S00 grams No No No VEX.ND X025000173 Granulated dark soil S00min S00 grams No							polarized light microscopy including dispersion staining.	ANI .
P128_0.0.0.1 2035000573 Granulated dark sol 500ml 550 grams Is chrystella abstets darkstets by scalauset dark sol Is P128_0.0.0.1 2035000573 Granulated dark sol 500ml 550 grams Is P128_0.0.0.1 Is Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.1 Is Is Is P128_0.0.0.0.1 Is Is Is P128_0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.							microscopy including dispersion staining.	1968
Vis. no trace light microccopy including absense dates and extend by polarized light microccopy including microccopy including dispersion statistics dispersion statistics of the statistics detected by polarized light microccopy including dispersion statistics of the statistics detected by polarized light microccopy including dispersion statistics of the statistics detected by polarized light microccopy including dispersion statistics of parent for detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion statistics of detected by full dispersion s	TP108_0.0-0.1	2025000573	Granulated dark soil	500ml	550 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
Vec, no trace subsetso detectod by polarised light National polarised light National polarised light National polarised light dispension statistic Mainter Detectod light National polarised light National polarised light dispension statistic Mainter Detectod light National polarised light National polarised light dispension statistic Mainter Detectod light National polarised light National polarised light dispension statistic Mainter Detectod light National polarised light National polarised light							No Amosite asbestos detected by polarized light microscopy including dispersion	Nil
polarise light jobarted light including microscopy including including including dispersion staining socymbets Mexicitad light including dispersion staining dispersion staining including including dispersion staining Carganic faire detected by polarised light including including dispersion staining Including including including including						Yes, no trace asbestos detected hv	staining. No Crocidolite asbestos detected by	NI
Normannia and a second and						polarized light microscopy including dispersion staining.	polarized light microscopy including dispersion staining.	NI
Drganic fibres detected by polarized light NII microscopy including dispersion staining.							polarized light microscopy including dispersion staining.	
							Organic fibres detected by polarized light microscopy including dispersion staining.	NI

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated	Weight (Dry Weight)	Trace Analysis	Result	Comments
TP109_0.0-0.1	2025000574	Granulated dark soil	otherwise 500ml	689 grams	Completed Y/N	No Chrysotile asbestos detected by	NI
				0		polarized light microscopy including dispersion staining.	
						No Amosite asbestos detected by polarized light microscopy including dispersion	NI
					Yes, no trace	staining. No Crocidolite asbestos detected by	NI
					as bestos detected by polarized light microscopy including	polarized light microscopy including dispersion staining.	
					dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	NI
						dispersion staining. Organic fibres detected by polarized lipht	NI
						microscopy including dispersion staining.	
TP110_0.0-0.1	2025000575	Granulated dark soil	500ml	517 grams		No Chrysotile asbestos detected by polarized light microscopy including	NI
						dispersion staining.	NI
						light microscopy including dispersion staining.	
					Yes, no trace asbestos detected by polarized light	No Crocidolite asbestos detected by polarized light microscopy including	NI
					microscopy including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by	NI
						polarized light microscopy including dispersion staining.	
						Organic fibres detected by polarized light microscopy including dispersion staining.	NI
TP111_0.0-0.1	2025000576	Granulated dark soil	500ml	614 grams		No Chrysotile asbestos detected by	NI
						polarized light microscopy including dispersion staining.	
						No Amosite asbestos detected by polarized light microscopy including dispersion	NI
					Yes, no trace	staining. No Crocidolite asbestos detected by	NI
					polarized light microscopy including	polarized light microscopy including dispersion staining.	
					dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	NI
						uspersion staining. Organic fibres detected by polarized light	NI
						microscopy including dispersion staining.	
TP112_0.0-0.1	2025000577	Granulated dark soil	500ml	633 grams		No Chrysotile asbestos detected by polarized light microscopy including	NI
						aispersion staining. No Amosite asbestos detected by polarized	NI
						light microscopy including dispersion staining.	
					Yes, no trace asbestos detected by polarized light	No Crocidolite asbestos detected by polarized light microscopy including	NI
					microscopy including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by	NI
						polarized light microscopy including dispersion staining.	
						Organic fibres detected by polarized light microscopy including dispersion staining.	NI
TP113_0.0-0.1	2025000578	Granulated dark soil	500ml	541 grams		No Chrysotile asbestos detected by	NI
_				-		polarized light microscopy including dispersion staining.	
						No Amosite asbestos detected by polarized light microscopy including dispersion	NI
					Yes, no trace	staining. No Crocidolite asbestos detected by	NI
					polarized light microscopy including	polarized light microscopy including dispersion staining.	
					uspersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	NI
						Organic fibres detected by polarized light	NI
						microscopy including dispersion staining.	
TP114_0.0-0.1	2025000579	Granulated dark soil	500ml	644 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	NI
						No Amosite asbestos detected by polarized light microscopy including dispersion	NI
					Yes, no trace	staining.	Anti
					asbestos detected by polarized light microscopy including	polarized light microscopy including dispersion staining.	Per la constante de
					dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscory including	NI
						dispersion staining.	M
						microscopy including dispersion staining.	1.00
TP115_0.0-0.1	2025000580	Granulated dark soil	500ml	640 grams		No Chrysotile asbestos detected by polarized light microscopy including	NI
						dispersion staining.	NI
						light microscopy including dispersion staining.	
					Yes, no trace asbestos detected by	No Crocidolite asbestos detected by polarized light microscopy including	NI
					microscopy including dispersion staining.	dispersion staining.	NI
						polarized light microscopy including dispersion staining.	
						Organic fibres detected by polarized light microscopy including dispersion staining	NI
TP116.0.0.0	2025000591	Granulated ded:	500ml	621 arxe-		No Chrysofile achiertor data and his	NI
	4043000381	or anorateo dank soil	Imbue	or 1 grams		polarized light microscopy including dispersion staining.	
						No Amosite asbestos detected by polarized light microscopy including dispersion	NI
					Yes, no trace	staining.	N
					asbestos detected by polarized light microscopy including	polarized light microscopy including dispersion staining.	
					dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	NI
						dispersion staining. Organic fibres detected by polarized linht	NI
						microscopy including dispersion staining.	
TP117_0.0-0.1	2025000582	Granulated dark soil	500ml	621 grams		No Chrysotile asbestos detected by polarized light microscopy including	NI
						dispersion staining. No Amosite asbestos detected hu nolari wel	NI
						light microscopy including dispersion staining.	
					Yes, no trace asbestos detected by polarized light	No Crocidolite asbestos detected by polarized light microscopy including	NI
					microscopy including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by	Ni
						polarized light microscopy including dispersion staining.	
						Organic fibres detected by polarized light microscopy including dispersion staining.	NI

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

 Analysis report:
 A101023.0436.01

 Laboratory LOT NO:
 2500107

Date Received:15.01.2025Date Analysed:15.01.2025Report Date:16.01.2025Client:ADE Consulting groupAnalytical method:ABI-P-01: Identification of Asbestos in Bulk Samples

Analysis performed by:

Grace Tig

Grace (Weichen) Jia Approved asbestos identifier

Results Authorised By:

Grac Tig

Grace (Weichen) Jia Approved Signatory

This report supersedes all previous reports with the same reference. This report shall not be reproduced except in full

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025 - Testing.

Tests not covered by NATA are denoted with *.

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client.

Sample analysed as received.

Samples are stored for minimum period of 4 weeks, if longer time is not advised by client.

All positive/negative results have been confirmed by polarized light microscopy including dispersion staining.

ABI-P-01: Qualitative Identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion

Staining Techniques as per AS4964.

Under AS4964, the reporting limit of asbestos in bulk samples is set as 0.1g/kg

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025 - Testing.

Tests not covered by NATA are denoted with *.

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dry Weight (g)	Trace Analysis (> 5 Fibres)	Asbestos ID in Soil (AS4964) >0.1g/kg	Weight Total ACM (g)	Comments
TP101_0.4-1.0	2025000583	Granulated dark soil	132.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP103_0.3-1.1	2025000584	Granulated dark soil	132.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP105_0.5-1.1	2025000585	Granulated dark soil	131.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP107_0.3-0.9	2025000586	Granulated dark soil	128.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP109_0.5-1.0	2025000587	Granulated dark soil	133.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP111_0.4-1.0	2025000588	Granulated dark soil	170.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dry Weight (g)	Trace Analysis (> 5 Fibres)	Asbestos ID in Soil (AS4964) >0.1g/kg	Weight Total ACM (g)	Comments
TP113_0.5-0.9	2025000589	Granulated dark soil	138.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP115_0.3-1.0	2025000590	Granulated dark soil	110.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		
TP117_0.4-0.9	2025000591	Granulated dark soil	109.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected		

	ENVIROLAB Empi	СНА		CUSTODY	FC	DR	RM	-	CI	ien	t				E Na <u>Sv</u> 12	NVIE tional p dney La Ashiey 12 9910	ROL phone m ab - En St, Ch	AB (umber virolab atswoo	GRC 1300 42 Servic d, NSV	CUP ENVIROLAB GROUP 24 344 National phone number 1300 424 344 es v 2067 pytrolab com au
[Copyright and Confi	dential]														Pa	nth Iah	- MPI	abora	tories	
Client: ADE Consu	Iting group				Clien	t Proje	ct Na	ame/Nu	mber/	Site etc	(ie repo	ort title):	-	16	18 Hay	den Cr	, Myar	e, WA	6154
Contact Person: N	icholas Maricic				1	-			23	3.0436.0	1				U	8 9317	2000 [E lad(âmbirc	som.au
Project Mgr: nicho	las.maricic@ade.group				PO N	o.:A10	1023.	.0436.0	1_002	_L21					<u>Me</u> 25	<u>Ibourn</u> Resear	<u>e Lab</u> - ch Driv	Enviro e. Crov	ab Ser	vices outh. VIC 3136
Sampler: JP, LHO					Envir	olab Q	luote	<u>No.</u> :			_				0	3 9763	2500	🖂 mel	bourne	e@envirolab.com.au
Address: 6/7 Miller	nium Court Silverwater NSW 2	128			Date	results	s requ	uired:							Ad	elaide (Office -	Enviro	lab Sei	rvices
<u>karin.azzam@a</u>	de.group; nicholas.marici	@ade.group			Or cł	100se:	star	ndard	/ same	e day / 1	day / 2	day / 3	day		7a	The Pa	rade, N ' 6800 I	orwoo M ade	d, SA 5 laide@	067 Jenvirolab.com.au
	please	email these peo	pole too.		Note:	Inform	i lab ir annlv	n advar	nce if u	rgent tur	naround	t is req	iired -				06000	Finaliza	l-h 0-	
Phone:	n/a	Mob:	41513003	8	Addi	tional r	eport	t forma	t: es	dat / eq	uis /					<u>spane (</u> 1, 10-20	Depot	St, Ba	iao sei iyo, QL	LD 4014
Email:	liam.hudson-ofarrell@ac andrew.hunt@ade.grou	<u>de.group; jon</u>	athan.parker@ad	e.group;	Lab (Comme	ents:			-					00 <u>Da</u> Un 00	<u>rwin Of</u> it 20/11 18 8967	<u>fice -</u> E 9 Reici 1201	⊠ bris nvirola nardt R ⊠ dan	bane@ b Servi oad, W vin@ei	jenvirolab.com.au Ices Vinnellie, NT 0820 nvirolab.com.au
	\$	ample informat	ion 👘	na. 1944 "N	ė.		2 2	· · ·		, ,	• '≞ to	ests Ro	quired	v	1.	,	ي د بر د اندي			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Combination 6	Hd	Cation Exchange Capacity (CEC)	Clay Content												Provide as much information about the sample as you car
1	SR01-250114	-	14/01/2024	Şoil	3	1													1	
2	SR02-250114	-	14/01/2024	Soil	8]
3	TP112-0.4-0.9	-	14/01/2024	Soil		1 82	58	1 077]
4	TP106-0.3-1.1	-	14/01/2024	Soil		3	1 50	1					[T	7
5	TP108-0.5-1.0	- 1	14/01/2024	Soil		. 53	۶۵	1							1		1	1	1	1 .
Relin , ished by (C	ompany):	ADE Consu	ting Group	Received by (Company):	65	5	N C)			5 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						100		Lab U	se Only
Print Name:		Nicholas Mari	cic	Print Name: Dann	iell	εī	گہ	φ			Job ni	mber:	37	d.	183	5	Cooli	ng:(lce	/ Ice p	ack / None
Date & Time:		14/01/2024		Date & Time: 15/1/2	25			13	30		Tempe	erature	8	2			Secur	ity sea	Intaci	t / Broken / None
Signature:	Numacut -			Signature:	2		_				TAT R	eq - S/	ME day	111	2)/3	141	STD		~	

- -

. .

-

÷

.

-

- -

- ----

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Liam Hudson-O'Farrell

Sample Login Details	
Your reference	23.0436.01
Envirolab Reference	370483
Date Sample Received	15/01/2025
Date Instructions Received	15/01/2025
Date Results Expected to be Reported	17/01/2025

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Soil
Turnaround Time Requested	2 days
Temperature on Receipt (°C)	8
Cooling Method	Ice
Sampling Date Provided	YES

Co	mr	ent	ts	

Longer TAT required for clay

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Inorg - Soil	CEC	Clay 50-120g
SR01_250114	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark			
SR02_250114	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
TP112-0.4-0.9								\checkmark	\checkmark	\checkmark
TP106-0.3-1.1								\checkmark	\checkmark	\checkmark
TP108-0.5-1.0								\checkmark	\checkmark	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 370483

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Liam Hudson-O'Farrell
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	<u>23.0436.01</u>
Number of Samples	5 Soil
Date samples received	15/01/2025
Date completed instructions received	15/01/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	17/01/2025
Date of Issue	17/01/2025
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Giovanni Agosti, Group Technical Manager Jack Wallis, Senior Chemist Jenny He, Inorganic Team Leader Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date extracted	-	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C6 - C10	mg/kg	<25	<25
vTRH C6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
Naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	82	82

svTRH (C10-C40) in Soil					
Our Reference		370483-1	370483-2		
Your Reference	UNITS	SR01_250114	SR02_250114		
Date Sampled		14/01/2025	14/01/2025		
Type of sample		Soil	Soil		
Date extracted	-	16/01/2025	16/01/2025		
Date analysed	-	16/01/2025	16/01/2025		
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50		
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100		
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100		
Total +ve TRH (C10-C36)	mg/kg	<50	<50		
TRH >C10 -C16	mg/kg	<50	<50		
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50		
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100		
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100		
Total +ve TRH (>C10-C40)	mg/kg	<50	<50		
Surrogate o-Terphenyl	%	81	81		

PAHs in Soil			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date extracted	-	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	96

Organochlorine Pesticides in soil			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date extracted	-	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	100	136

Organophosphorus Pesticides in Soil			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date extracted	-	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025
Dichlorvos	mg/kg	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	100	136

PCBs in Soil			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date extracted	-	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	98	95

Acid Extractable metals in soil			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date prepared	-	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025
Arsenic	mg/kg	9	12
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	17	26
Copper	mg/kg	7	11
Lead	mg/kg	27	26
Mercury	mg/kg	0.1	0.1
Nickel	mg/kg	3	7
Zinc	mg/kg	8	16

Moisture			
Our Reference		370483-1	370483-2
Your Reference	UNITS	SR01_250114	SR02_250114
Date Sampled		14/01/2025	14/01/2025
Type of sample		Soil	Soil
Date prepared	-	16/01/2025	16/01/2025
Date analysed	-	17/01/2025	17/01/2025
Moisture	%	13	16

Misc Inorg - Soil				
Our Reference		370483-3	370483-4	370483-5
Your Reference	UNITS	TP112-0.4-0.9	TP106-0.3-1.1	TP108-0.5-1.0
Date Sampled		14/01/2025	14/01/2025	14/01/2025
Type of sample		Soil	Soil	Soil
Date prepared	-	16/01/2025	16/01/2025	16/01/2025
Date analysed	-	16/01/2025	16/01/2025	16/01/2025
pH 1:5 soil:water	pH Units	4.8	5.1	5.1

CEC				
Our Reference		370483-3	370483-4	370483-5
Your Reference	UNITS	TP112-0.4-0.9	TP106-0.3-1.1	TP108-0.5-1.0
Date Sampled		14/01/2025	14/01/2025	14/01/2025
Type of sample		Soil	Soil	Soil
Date prepared	-	17/01/2025	17/01/2025	17/01/2025
Date analysed	-	17/01/2025	17/01/2025	17/01/2025
Exchangeable Ca	meq/100g	1.3	0.9	1.7
Exchangeable K	meq/100g	0.2	0.1	0.2
Exchangeable Mg	meq/100g	2.5	1.5	1.8
Exchangeable Na	meq/100g	0.3	<0.1	<0.1
Cation Exchange Capacity	meq/100g	4.4	2.6	3.7

Clay 50-120g				
Our Reference		370483-3	370483-4	370483-5
Your Reference	UNITS	TP112-0.4-0.9	TP106-0.3-1.1	TP108-0.5-1.0
Date Sampled		14/01/2025	14/01/2025	14/01/2025
Type of sample		Soil	Soil	Soil
Date prepared	-	15/01/2025	15/01/2025	15/01/2025
Date analysed	-	16/01/2025	16/01/2025	16/01/2025
Clay in soils <2µm	% (w/w)	44	54	61

Made at ID	
Method ID	Methodology Summary
AS1289.3.6.3	Particle Size Distribution using in house method INORG-107 by way of sieving and/or hydrometer sedimentation testing. Clay fraction at <2µm reported.
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2
Date extracted	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	99	97
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	99	97
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	96	93
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	93	92
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	108	106
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	98	96
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	100	99
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	78	1	82	72	13	87	82

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2
Date extracted	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	105	89
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	84	71
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	86	80
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	105	89
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	84	71
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	86	80
Surrogate o-Terphenyl	%		Org-020	92	1	81	86	6	94	81

QUALIT	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2	
Date extracted	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025	
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	82	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	90	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	78	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	84	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	78	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	80	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	76	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	76	64	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	99	1	99	105	6	80	106	

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2
Date extracted	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	84
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	82
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	84
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	74
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	90
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	76
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	88
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	84
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	92
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	84
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	117	1	100	127	24	94	130

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2
Date extracted	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	76
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	78
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	76
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	78
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	86
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	74
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	72
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	117	1	100	127	24	94	130

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2	
Date extracted	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025	
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025	
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	96	80	
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	101	1	98	102	4	79	103	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370483-2	
Date prepared	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025	
Date analysed	-			16/01/2025	1	16/01/2025	16/01/2025		16/01/2025	16/01/2025	
Arsenic	mg/kg	4	Metals-020	<4	1	9	7	25	113	94	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	104	98	
Chromium	mg/kg	1	Metals-020	<1	1	17	15	12	108	94	
Copper	mg/kg	1	Metals-020	<1	1	7	8	13	110	105	
Lead	mg/kg	1	Metals-020	<1	1	27	27	0	108	89	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	0.1	0.1	0	113	104	
Nickel	mg/kg	1	Metals-020	<1	1	3	3	0	111	94	
Zinc	mg/kg	1	Metals-020	<1	1	8	9	12	103	80	

QUALITY		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			16/01/2025	5	16/01/2025	16/01/2025		16/01/2025	[NT]
Date analysed	-			16/01/2025	5	16/01/2025	16/01/2025		16/01/2025	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	5	5.1	5.0	2	100	[NT]
Client Reference: 23.0436.01

QU		Du	Spike Re	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			17/01/2025	[NT]		[NT]	[NT]	17/01/2025	
Date analysed	-			17/01/2025	[NT]		[NT]	[NT]	17/01/2025	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	102	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	111	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	101	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	95	[NT]

Client Reference: 23.0436.01

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Client Reference: 23.0436.01

Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Appendix I – Data Quality Assessment

Table I1. Summary of Soil Sample QA/QC Analysis.

A summary of the Quality Assurance / Quality Control (QA/QC) results for the soil analysis is shown below in **Table I1**. Refer to **Appendix J – RPD calculations** for further information and data analysis.

Sample collection & handling	Yes.						
measures appropriate?	The samples were in proper custody between the field and reaching the laboratory in a good condition, documented in a signed chain of custody form (refer to Appendix H). Samples were properly and adequately preserved and refrigerated, and all analytical holding times were met.						
Field Duplicate Samples	Two intra-laboratory (blind) duplicates (ID: BR1, BR2) and two inter- laboratory (split) duplicates (ID: SR1, SR2) were collected and analysed from the sampling event.						
	Results from the blind duplicate and split duplicate samples are presented in Appendix J . Reported concentrations in parent samples were compared to those reported in blind and split duplicate samples and relative percent difference (RPDs) were calculated.						
	All RPDs were reported within acceptable range (as outlined in Appendix J) except for 3 marginal exceedances as follows:						
	 Chromium (III+VI) (RPD: 36) of the tolerance between BR2 and the parent sample. 						
	 Chromium (III+VI) (RPD: 41) of the tolerance between SR2 and the parent sample. 						
	• Zinc (RPD: 72) of the tolerance between SR2 and the parent sample.						
	These exceedances can be attributed to the difficulties in obtaining homogenous samples from heterogenous matrices. It is not considered to invalidate the data set.						
Laboratory QA/QC results	Yes.						
acceptable?	ADE considers that the internal QA/QC undertaken by the laboratories is satisfactory (refer to Appendix H for the laboratory quality control report).						
Decontamination procedures	Dedicated disposable materials (such as nitrile gloves) were changed between each sampling point. All disposable sampling equipment/materials were collected and removed before leaving the site. Equipment rinsates were not required due to use of dedicated equipment.						
Trip Blank, Trip Spike	No Trip Blank and Trip Spike were used. None of the samples reported BTEX concentrations exceeding the SAC and were below the LOR for the laboratory hence the absence of the trip spike and blank will not affect the outcome of this assessment. The laboratory results were consistent with field observations including no odours or PID readings greater than 1.0 ppm.						

Field & Laboratory Data Usable?

ADE considers that the analytical results are representative of the conditions of the sampling locations at the time of sampling and are directly usable for the purpose of this assessment.

Data Review

Quality control reports from the laboratories subcontracted for sample analyses were reviewed. Laboratory blank samples, duplicate samples, control samples, spiked samples and method blanks were evaluated.

Chain of Custody

Australian Standard AS 4482.1 defines the chain-of-custody documentation as the link in the transfer of samples between the time of collection and arrival at the laboratory. The CoC utilised by ADE included the items recommended by the Standard:

- The person transferred the samples;
- The person who received the samples;
- Date the samples were collected;
- Date the samples were received at the laboratory; and
- Contact name and details for the client.

Copies of the CoCs completed during this investigation are provided in in **Appendix H – Analytical Reports and Chain of Custody.**

Field Equipment Calibration

Field equipment requiring calibration included the use of a photo-ionisation detector (PID). The PID was calibrated by an external qualified technician before the sampling events (refer to **Appendix F** for the calibration certificate).

Laboratory Analytical Methodology and Accreditation

All chemical analysis was undertaken by NATA accredited laboratories. Refer to **Appendix H – Analytical Reports and Chain of Custody Documentation** for the details of the adopted laboratory analytical methods and their respective accreditations. The laboratory methodologies and the respective accreditations of SLS and Envirolab were deemed suitable for the required analyses.

Detection Limits / Practical Quantification Limits

The laboratory limit of reporting (LOR) should be at least half the SAC for to ensure that suitable resolution and accuracy to evaluate the risk to receptors are captured.

The LORs were sufficient to accurately quantify detectable contaminants.

Record of Holding Times

All primary and QAQC samples collected over the course of the investigation were submitted within the recommended holding times of the required analysis. As such, the holding times of the samples to the final submission to the laboratories used (SLS and Envirolab) meet the recommended holding time criteria, with all samples analysed within 7 days (or specific to an analyte) from the time of collection.

Laboratory Method Blanks

The assessment of method blank results was to determine the existence and magnitude of contamination resulting from laboratory activities.

The assessment of blank analysis results was carried out to determine the existence and magnitude of contamination resulting from laboratory activities. No contaminants were found in the blanks analysed by the laboratory.

Laboratory Spikes and Surrogates

The laboratory limit of 70-130% for inorganics / metals, and 60-140% for organics was used to validate matrix spikes and laboratory control samples. The laboratory limit of 50-150% was implemented to validate surrogate recoveries for organic analytes.

Summary

The acceptable limits on decision errors to be applied in the investigation and the manner of addressing possible decision errors have been applied. The data is considered suitable for its intended use in operations, decision making and planning as per step 6 of the data quality objectives and assessment.

		Lab Report Number	A101023.0436.01 (566-593)	A101023.0436.01 (566-593)		A101023.0436.01 (566-593)	370483		A101023.0436.01 (566-593)	A101023.0436.01 (566-593)
		Field ID	TP106_0.0-0.1	BR01_250114		TP106_0.0-0.1	SR01_250114	1	TP112_0.0-0.1	BR02_250114
		Date	14 Jan 2025	14 Jan 2025		14 Jan 2025	14 Jan 2025	1	14 Jan 2025	14 Jan 2025
		Matrix Type	Soil	Soil	RPD	Soil	Soil	RPD	Soil	Soil
2754	Unit	EQL		1	1		1			1
BIEX Nerebelana (VOC)	mallea	1					-1			
	mg/kg	1	-	-0.50	-	-0.50	<1	-	-0.50	-0.50
Benzene	mg/kg	0.2	<0.50	<0.50	0	<0.50	<0.2	0	<0.50	<0.50
Toluene	mg/kg	0.5	<0.50	<0.50	0	<0.50	<0.5	0	<0.50	<0.50
	mg/kg	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0
Xylene (m & p)	mg/kg	2	<2.0	<2.0	0	<2.0	<2	0	<2.0	<2.0
Xylene (0)	mg/kg	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0
	mg/kg	1	<2.0	<2.0	0	<2.0	<1	0	<2.0	<2.0
	тд/кд	<u> </u>	<2.00	<2.00	0	<2.00	-		<2.00	<2.00
IKH CC C10 Fraction (F1)	mallea	25	-25	-25	0	-25	-25	0	-25	-25
	mg/kg	25	<35	<35	0	<35	<25	0	<35	<35
C6-C10 (F1 Minus BTEX)	mg/kg	25	<35	<35	0	<35	<25	0	<35	<35
>C10-C16 Fraction (F2)	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50
>CIO-CI6 Fraction (F2 minus	ma llua	50					-50			
Naphthalene)	mg/kg	50	-100		-	-100	<50	-	-100	-100
>C16-C34 Fraction (F3)	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100
>C34-C40 Fraction (F4)	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100
Other	mg/Kg	<u> </u>	<100	<100	0	<100	UC>		<100	<100
Dhasalana	malka	0.1					-0.1			
	ilig/kg	0.1	-	-	-	-	<0.1		-	-
	mallia	0.1	-0.10	-0.10	0	-0.10	-0.1		-0.10	<0.10
hexachiorobenzene	тд/кд	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Moisture Content	0/	0.1	16 7	17.5		16.7	12	25	15.0	15.2
Mosture content	70	0.1	10.7	17.5	5	16.7	15	25	13.9	15.2
Arconic	ma/ka	4	<5.0	11.2	77	<e 0<="" td=""><td>0</td><td>57</td><td>° C</td><td>E 7</td></e>	0	57	° C	E 7
Cadmium	mg/kg	4	0.48	11.2	67	0.48	-0.4	10	8.8	5.7
	mg/kg	0.1	10.6	0.24	0/	10.6	17	10	17.1	1.42
	mg/kg	1	10.0	7.2	25	10.8	1/	40	17.1	24.5
Load	mg/kg	1	3.0	7.2	25	3:0	7	16	9.5	7.2
Morcury	mg/kg	0.1	<0.10	<0.10	/	<0.10	0.1	10	<0.10	<0.10
Nickel	mg/kg	0.1	25	25	0	25	2	18	5.4	4.0
Zinc	mg/kg	1	<5.0	5.2	4	<5.0	8	10	7.5	4.0
Organochlorine Pesticides	IIIg/ Kg		<5.0	5.2	4	5.0	0	40	1.5	14.7
4 4-DDF	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Aldrin	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Aldrin + Dieldrin	mg/kg	0.1	-		-	-	<0.1	-	-	
h-BHC	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Chlordane (cis)	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Chlordane (trans)	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
d-BHC	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
DDD	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
DDT	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
DDT+DDE+DDD	mg/kg	0.1	-	-		-	<0.1		-	-
Dieldrin	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Endosulfan I	mg/kg	0.1	<0.20	<0.20	0	<0.20	<0.1	0	<0.20	<0.20
Endosulfan II	mg/kg	0.1	<0.20	<0.20	0	<0.20	<0.1	0	<0.20	<0.20
Endosulfan sulphate	mg/kg	0.1	<0.10	<0.10	0	<0.10	< 0.1	0	<0.10	<0.10
Endrin	mg/kg	0.1	<0.20	<0.20	0	<0.20	< 0.1	0	<0.20	<0.20
Endrin aldehyde	mg/kg	0.1	<0.10	<0.10	0	<0.10	< 0.1	0	<0.10	<0.10
Endrin ketone	mg/kg	0.1	<0.10	<0.10	0	<0.10	-	-	<0.10	<0.10
g-BHC (Lindane)	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Heptachlor	mg/kg	0.1	<0.10	<0.10	0	<0.10	< 0.1	0	<0.10	<0.10
Heptachlor epoxide	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Methoxychlor	mg/kg	0.1	<0.10	<0.10	0	<0.10	< 0.1	0	<0.10	<0.10
Organophosphorous Pesticides										
Azinophos methyl	mg/kg	0.1	-	-	-	-	< 0.1	-	-	-
Bromophos-ethyl	mg/kg	0.1	-	-	-	-	< 0.1	-	-	-
Chlorpyrifos	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Chlorpyrifos-methyl	mg/kg	0.1	<0.10	<0.10	0	<0.10	< 0.1	0	<0.10	<0.10
Coumaphos	mg/kg	0.1	-	-	-	-	< 0.1	-	-	-
Diazinon	mg/kg	0.1	<0.10	<0.10	0	<0.10	< 0.1	0	<0.10	<0.10
Dichlorvos	mg/kg	0.1	-	-		-	<0.1	-	-	-
Dimethoate	mg/kg	0.1	-	-	-	-	<0.1	-	-	-

QAQC_ Relative Percent Difference Table

		Lab Report Number	A101023.0436.01 (566-593)	A101023.0436.01 (566-593)		A101023.0436.01 (566-593)	370483		A101023.0436.01 (566-593)	A101023.0436.01 (566-593)
		Field ID	TP106 0.0-0.1	BR01 250114		TP106 0.0-0.1	SR01 250114	1	TP112 0.0-0.1	BR02 250114
		Date	14 Jan 2025	14 Jan 2025		14 Jan 2025	14 Jan 2025		14 Jan 2025	14 Jan 2025
		Matrix Type	Soil	Soil	RPD	Soil	Soil	RPD	Soil	Soil
				·		*	•	•	ч	•
	Unit	EQL								
Disulfoton	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Ethion	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Ethoprop	mg/kg	0.1	<0.10	<0.10	0	<0.10	-	-	<0.10	<0.10
Fenitrothion	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Fenthion	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Malathion	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Methidathion	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Methyl parathion	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
Mevinphos (Phosdrin)	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Phorate	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Ronnel	mg/kg	0.1	<0.10	<0.10	0	<0.10	<0.1	0	<0.10	<0.10
РАН										
Benzo(b+j+k)fluoranthene	mg/kg	0.2	<0.30	<0.30	0	<0.30	<0.2	0	<0.30	<0.30
Acenaphthene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Acenaphthylene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Anthracene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Benzo(a)anthracene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Benzo(a) pyrene	mg/kg	0.05	<0.30	<0.30	0	<0.30	< 0.05	0	<0.30	<0.30
Benzo(g,h,i)perylene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Chrysene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Dibenz(a,h)anthracene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Fluoranthene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Fluorene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Naphthalene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Phenanthrene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Pyrene	mg/kg	0.1	<0.30	<0.30	0	<0.30	<0.1	0	<0.30	<0.30
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.3	0.35	0.35	0	0.35	<0.5	0	0.35	0.35
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.3	0.70	0.70	0	0.70	<0.5	33	0.70	0.70
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.3	<0.30	<0.30	0	<0.30	<0.5	0	<0.30	<0.30
PAHs (Sum of total)	mg/kg	0.3	<0.30	<0.30	0	<0.30	-	-	<0.30	<0.30
PAHs (Sum of positives)	mg/kg	0.05	-	-	-	-	< 0.05	-	-	-
PCBs										
Arochlor 1016	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Arochlor 1221	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Arochlor 1232	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Arochlor 1242	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Arochlor 1248	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Arochlor 1254	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Arochlor 1260	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
PCBs (Sum of total)	mg/kg	0.1	<0.50	<0.50	0	<0.50	<0.1	0	<0.50	<0.50
Pesticides										
DEF	mg/kg	0.1	<0.10	<0.10	0	<0.10	-	-	<0.10	<0.10
Fenamiphos	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Mirex	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
Parathion	mg/kg	0.1	-	-	-	-	<0.1	-	-	-
TP <u>H</u>										
C6-C9 Fraction	mg/kg	25	<25	<25	0	<25	<25	0	<25	<25
C10-C14 Fraction	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50
C15-C28 Fraction	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100
C29-C36 Fraction	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100
C10-C36 Fraction (Sum)	mg/kg	50	<100	<100	0	<100	<50	0	<100	<100

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

		Lab Bonart Number		A101022 0426 01 (E66 E02)	270492	1
		Lab Report Number		A101023.0436.01 (566-593)	3/0483	
		Field ID		TP112_0.0-0.1	SR02_250114	
		Date		14 Jan 2025	14 Jan 2025	
		Matrix Type	RPD	Soil	Soil	RPD
	Unit	EQL				
BTEX						
Naphthalene (VOC)	mg/kg	1	-	-	<1	-
Benzene	mg/kg	0.2	0	<0.50	< 0.2	0
Toluene	mg/kg	0.5	0	<0.50	<0.2	0
Ethylhonzono	mg/kg	0.5	0	<0.50	<0.5	0
Ethylbenzene	mg/kg	1	0	<1.0	<1	0
Xylene (m & p)	mg/kg	2	0	<2.0	<2	0
Xylene (o)	mg/kg	1	0	<1.0	<1	0
Xylene Total	mg/kg	1	0	<2.0	<1	0
Total BTEX	mg/kg	2	0	<2.00	-	-
TRH						
C6-C10 Fraction (F1)	mg/kg	25	0	<35	<25	0
C6-C10 (F1 minus BTFX)	mg/kg	25	0	<35	<25	0
>C10-C16 Eraction (E2)	mg/kg	50	0	<50	<50	0
>C10-C10 Fraction (F2)	116/ 16	50	0	<50	<50	
Nerbehalars	h	50			-50	
	mg/kg	50	-	-	<50	-
>C16-C34 Fraction (F3)	mg/kg	100	0	<100	<100	0
>C34-C40 Fraction (F4)	mg/kg	100	0	<100	<100	0
>C10-C40 Fraction (Sum)	mg/kg	50	0	<100	<50	0
Other						
Phosalone	mg/kg	0.1	-	-	<0.1	-
Halogenated Benzenes						
Hexachlorobenzene	mø/ka	0.1	n	<0.10	<0.1	0
Inorganics	1116/ Ng	0.1	0	<0.10	<u.1< td=""><td>0</td></u.1<>	0
Additional Constant		0.1		15.0	10	1
Moisture Content	%	0.1	5	15.9	16	1
Metals						
Arsenic	mg/kg	4	41	8.6	12	33
Cadmium	mg/kg	0.1	40	0.95	<0.4	81
Chromium (III+VI)	mg/kg	1	36	17.1	26	41
Copper	mg/kg	1	25	9.3	11	17
Lead	mg/kg	1	22	25.2	26	3
Leau Aana	1116/ 16	1	22	25.5	20	3
	mg/kg	0.1	0	<0.10	0.1	0
Nickel	mg/kg	1	30	5.4	/	26
Zinc	mg/kg	1	65	7.5	16	72
Organochlorine Pesticides						
4,4-DDE	mg/kg	0.1	0	<0.10	<0.1	0
a-BHC	mg/kg	0.1	0	<0.10	<0.1	0
Aldrin	mg/kg	0.1	0	<0.10	< 0.1	0
Aldrin + Dieldrin	mg/kg	0.1	-	_	<0.1	-
h-BHC	mg/kg	0.1	0	<0.10	<0.1	0
Chlordana (sis)	mg/kg	0.1	0	<0.10	<0.1	0
	iiig/kg	0.1	0	<0.10	<0.1	0
Chiordane (trans)	mg/kg	0.1	0	<0.10	<0.1	0
d-BHC	mg/kg	0.1	0	<0.10	<0.1	0
DDD	mg/kg	0.1	0	<0.10	<0.1	0
DDT	mg/kg	0.1	0	<0.10	<0.1	0
DDT+DDE+DDD	mg/kg	0.1	-	-	<0.1	-
Dieldrin	mg/kg	0.1	0	<0.10	<0.1	0
Endosulfan I	mg/kg	0.1	0	<0.20	<0.1	0
Endosulfan II	mg/kg	0.1	0	<0.20	<0.1	0
Endosulfan sulnhate	mg/kg	0.1		<0.10	<0.1	<u> </u>
Endrin	ma/ka	0.1	0	<0.20	>0.1	0
Endrin aldahuuta	mg/Kg	0.1	0	<0.20	<u.1< td=""><td>0</td></u.1<>	0
	mg/kg	0.1	U	<0.10	<0.1	U
Endrin ketone	mg/kg	0.1	0	<0.10	-	-
g-BHC (Lindane)	mg/kg	0.1	0	<0.10	<0.1	0
Heptachlor	mg/kg	0.1	0	<0.10	<0.1	0
Heptachlor epoxide	mg/kg	0.1	0	<0.10	<0.1	0
Methoxychlor	mg/kg	0.1	0	<0.10	<0.1	0
Organophosphorous Pesticides		ĺ				
Azinophos methyl	mø/kø	0.1	-	_	<0.1	-
Bromonhos_ethyl	mg/kg	0.1	-	-	<0.1	-
	111g/ Kg	0.1	-	-0.40	L.U/	-
	mg/kg	0.1	0	<0.10	<0.1	0
Chlorpyrifos-methyl	mg/kg	0.1	0	<0.10	<0.1	0
Coumaphos	mg/kg	0.1	-		<0.1	-
Diazinon	mg/kg	0.1	0	<0.10	<0.1	0
Dichlorvos	mg/kg	0.1	-	-	<0.1	-
Dimethoate	mg/kg	0.1	-	-	< 0.1	-
· · · · · · · · · · · · · · · · · · ·	0, 0	-				

		Lab Report Number		A101023 0436 01 (566-593)	370483	
		Eab Report Number		TP112_0.0-0.1	SR02 250114	-
		Date		14 Jan 2025	14 Jan 2025	-
		Matrix Type	RPD	Soil	Soil	RPD
		Wathkirype	N D	301	5011	
	Unit	FOI				
Disulfoton	mg/kg	0.1	-	-	<0.1	-
Ethion	mg/kg	0.1	-	-	<0.1	-
Ethoprop	mg/kg	0.1	0	<0.10	-	-
Fenitrothion	mg/kg	0.1	-	-	< 0.1	-
Fenthion	mg/kg	0.1	-	-	< 0.1	-
Malathion	mg/kg	0.1	-	-	< 0.1	-
Methidathion	mg/kg	0.1	-	-	< 0.1	-
Methyl parathion	mg/kg	0.1	0	<0.10	< 0.1	0
Mevinphos (Phosdrin)	mg/kg	0.1	-	-	< 0.1	-
Phorate	mg/kg	0.1	-	-	< 0.1	-
Ronnel	mg/kg	0.1	0	<0.10	< 0.1	0
РАН	0, 0					
Benzo(b+j+k)fluoranthene	mg/kg	0.2	0	<0.30	< 0.2	0
Acenaphthene	mg/kg	0.1	0	<0.30	< 0.1	0
Acenaphthylene	mg/kg	0.1	0	<0.30	<0.1	0
Anthracene	mg/kg	0.1	0	<0.30	<0.1	0
Benzo(a)anthracene	mg/kg	0.1	0	<0.30	< 0.1	0
Benzo(a) pyrene	mg/kg	0.05	0	<0.30	< 0.05	0
Benzo(g.h.i)pervlene	mg/kg	0.1	0	<0.30	<0.1	0
Chrysene	mg/kg	0.1	0	<0.30	<0.1	0
Dibenz(a.h)anthracene	mg/kg	0.1	0	<0.30	<0.1	0
Fluoranthene	mg/kg	0.1	0	<0.30	<0.1	0
Fluorene	mg/kg	0.1	0	<0.30	<0.1	0
Indeno(1.2.3-c.d)pyrene	mg/kg	0.1	0	<0.30	<0.1	0
Naphthalene	mg/kg	0.1	0	<0.30	<0.1	0
Phenanthrene	mg/kg	0.1	0	<0.30	<0.1	0
Pyrene	mg/kg	0.1	0	<0.30	<0.1	0
Benzo(a)pyrene TEO calc (Half)	mg/kg	0.3	0	0.35	<0.5	0
Benzo(a)pyrene TEO (LOR)	mg/kg	0.3	0	0.70	<0.5	33
Benzo(a)pyrene TEO calc (Zero)	mg/kg	0.3	0	<0.30	<0.5	0
PAHs (Sum of total)	mg/kg	0.3	0	<0.30	-	-
PAHs (Sum of positives)	mg/kg	0.05	-	-	< 0.05	-
PCBs						
Arochlor 1016	mg/kg	0.1	0	<0.50	<0.1	0
Arochlor 1221	mg/kg	0.1	0	<0.50	<0.1	0
Arochlor 1232	mg/kg	0.1	0	<0.50	<0.1	0
Arochlor 1242	mg/kg	0.1	0	<0.50	<0.1	0
Arochlor 1248	mg/kg	0.1	0	<0.50	<0.1	0
Arochlor 1254	mg/kg	0.1	0	<0.50	<0.1	0
Arochlor 1260	mg/kg	0.1	0	<0.50	<0.1	0
PCBs (Sum of total)	mg/kg	0.1	0	<0.50	<0.1	0
Pesticides			-			
DEF	mg/kg	0.1	0	<0.10	-	-
Fenamiphos	mg/kg	0.1	-	-	< 0.1	-
Mirex	mg/kg	0.1	-	-	<0.1	-
Parathion	mg/kg	0.1	-	-	<0.1	-
ТРН					- 167 E 168	1
C6-C9 Fraction	mg/kg	25	0	<25	<25	0
C10-C14 Fraction	mg/kg	50	0	<50	<50	0
C15-C28 Fraction	mg/kg	100	0	<100	<100	0
C29-C36 Fraction	mg/kg	100	0	<100	<100	0
C10-C36 Fraction (Sum)	mg/kg	50	0	<100	<50	0

*RPDs have only been considered where a concentration is greater than 1 times t

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for

***Interlab Duplicates are matched on a per compound basis as methods vary be

Further details regarding ADE's services are available via

ADE Consulting Group Pty Ltd

 Sydney
 Newcastle

 Unit 6/7 Millennium Court
 Unit 9/303 Glenwood Drise

 Silver water, NSW 2128, Australia
 Thornton, NSW 2122, Australia

ADE Consulting Group (QLD) Pty Ltd ADE Consulting Group (VIC) Pty Ltd.

Brisbane Melbourne Unit 10/53 Metropiex Avenue Unit 4/95 Salmon Street Unit 4/95 Salmon Street Port Melbourne, VIC 3207, Australia